
NTRU Cryptosystems Technical Report

Report # 019, Version 1
Title: Timing Attacks on NTRUENCRYPT via Variation in the Number of Hash Calls
Author: Joseph H. Silverman, William Whyte
Release Date: February 2006

Abstract. This report studies timing attacks on NTRUENCRYPT

based on variable number of hash calls. The attacks apply to
the parameter sets of [3]. We describe the attacks and describe
simple countermeasures.

§Section 1. NTRUENCRYPT overview

In this section we briefly review how NTRUENCRYPT works in order to set notation.
For further details, see [1,2,3]. Recall that NTRUENCRYPT uses the ring of truncated
polynomials (also sometime called the ring of convolution polynomials)

Z[X]/(XN − 1).

We denote multiplication in this ring by ∗. At various stages of encryption and
decryption the coefficients of these polynomials are reduced modulo q and/or mod-
ulo p, where p and q are relatively prime integers. This reduction is always per-
formed so that the reduced coefficients lie in the range from 0 to p−1 (respectively 0
to q−1). In particular, reduction modulo p and reduction modulo q do not commute
with one another. For example,

(11 mod 7) mod 2 = 4 mod 2 = 0 and (11 mod 2) mod 7 = 1 mod 7 = 1.

For simplicity in this note, we restrict attention to the case p = 2, in which
case various polynomials are chosen to be binary (i.e., all coefficients 0 or 1), and
in some cases with a fixed number of zeros and ones. To ease notation, we let

BN = {binary polynomials},
BN (d) = {binary polynomials with exactly d ones}.

An NTRUENCRYPT private key consists of a pair of (binary) polynomials f and g.
The associated public key is the polynomial

h = f−1
q ∗ g mod q,

where f−1
q denotes the inverse of f modulo q. Similarly, we let f−1

p denote the
inverse of f modulo p. To speed decryption, the polynomial f is often taken in

1

NTRU Cryptosystems Technical Report #019 2

the form f = 1 + pF with F ∈ BN (dF), in which case f−1
p = 1. See [2,3] for a

discussion. The special form 1 + pF will play an important role in our attack.
Encryption and decryption use two hash functions. We denote them by Hash

and Hash′. In practice, they are built using either SHA-1 or SHA-256 in various
ways, depending on the desired security level, see [3]. The attack that we describe
is based on the fact that for the number of SHA calls required by Hash depends
on the input to Hash. Thus by measuring decryption time, an attacker may glean
information about the input to Hash, which in turn reveals information about the
private key f .

The enryption process works as follows.

NTRUENCRYPT Encryption Algorithm

M ∈ BN

r = Hash(M) ∈ BN (dr)
m′ = M ⊕Hash′(r ∗ h mod q)

e = (r ∗ h + m′) mod q

Padded plaintext
Randomizer
Message representative
Ciphertext

The decryption algorithm first recovers the (padded) message representative m′

and plaintext M and then uses them to recreate the blinding value r and verify
that (m′, e) is a valid NTRUENCRYPT pair.

NTRUENCRYPT Decryption Algorithm

m′ =
(
(f ∗ e mod q) mod 2

) ∗ f−1
2 mod 2

M = m′ ⊕Hash′(e−m′ mod q)
r = Hash(M)

Verify that e equals r ∗ h + m′ mod q

Note that on decryption, e and m′ completely determine all the following op-
erations.

The basis for our timing attack lies in the way in which Hash uses SHA to
create r from M . The blinding value r is required to be a binary polynomial with
exactly dr ones, and the process described in [3] for creating r from M may take
a different number of SHA calls for different values of M . Later we will describe
exactly how this is done, but for now we simply observe that this leads to a time
variation that an attacker may be able to measure and show how these timing
observations may be converted into information about the private key f .

February 2006

NTRU Cryptosystems Technical Report #019 3

§Section 2. The time trail of a ciphertext

As we saw in Section 1, the number of hash calls required to create the blinding
value r from a message representative/ciphertext pair (m′, e) may be different for
different pairs (m′, e). Each hash call requires a nontrivial amount of time, so an
adversary might be able to determine how many hash calls Bob uses in attempting
to decrypt a (possibly bogus) ciphertext e.

In practice, there will be a number K so that the number of hash calls required
to create r from (m′, e) is usually either K or K+1. For each pair (m′, e), regardless
of whether or not it is a valid NTRUENCRYPT pair, we define r(m′, e) to be the
output from the decryption algorithm,

r(m′, e) = Hash
((

m′ + Hash′(e−m′ mod q
)
) mod 2

)
,

and we set β(m′, e) ∈ {0, 1} by the rule

β(m′, e) =
{

0 if it takes ≤ K hashes to create r(m′, e),
1 if it takes > K hashes to create r(m′, e).

Note that the computation of r(m′, e), and thus of β(m′, e), requires no private
knowledge.

For a given (m′, e), we look also at the rotations (Xim′, Xie) for i = 0, 1,
We define the Time Trail of (m′, e) to be the binary vector

T (m′, e) =
(
β(m′, e), β(Xm′, Xe), β(X2m′, X2e), . . . , β(XN−1m′, XN−1e)

)

∈ {0, 1}N .

The Time Trail tells us how many hashes are required for each of the rotations of
the pair (m′, e).

Let P be the probability that a randomly chosen (m′, e) requires (at most) K
hash calls and similarly 1 − P is the probability that a randomly chosen (m′, e)
requires (at least) K + 1 hash calls. If neither P nor 1 − P is too small, then the
probability that two pairs (m′

1, e1) and (m′
2, e2) have the same time trails is quite

small. More precisely, it is not hard to derive the formula

Prob
(
T (m′

1, e1) = T (m′
2, e2)

)
= (1− 2P + 2P 2)N .

(We defer the derivation of this formula to Section A.1.)

February 2006

NTRU Cryptosystems Technical Report #019 4

§3. A timing attack based on variable number of hash calls

In this section we explain how an adversary Oscar might use time trails in order to
derive information about Bob’s private key.

Oscar first chooses a collection of (possibly bogus) ciphertexts E (i.e., E is a
collection of polynomials modulo q). He also chooses a set of message representa-
tive values M (i.e., a collection of binary polynomials) with the property that M
contains many of the polynomials in the set

{
((f ∗ e mod q) mod 2) ∗ (f−1 mod 2) : e ∈ E}

.

Note that this is exactly the set of message representative that Bob would create
during the process of decrypting the ciphertexts in E . More precisely, we assume
that the probability

pM,E := Prob
e∈E

(
((f ∗ e mod q) mod 2) ∗ (f−1 mod 2) ∈M)

is not too small.
Before starting the active part of the attack, Oscar creates a table consisting

of the time trails of every pair in M× E . In other words, he creates a searchable
list of binary vectors (

T (m′, e) : m′ ∈M and e ∈ E}
.

Thus the precomputation required for the attack has time and space requirements
that are O

(
#M·#E)

.
To initiate the attack, Oscar chooses a random e ∈ E , sends it to Bob, and

records how long it takes Bob to decipher it. In this way, Oscar determines how
many hash calls are required to create r from the ciphertext e and the message
representative

m′(e) := ((f ∗ e mod q) mod 2) ∗ (f−1 mod 2),

so Oscar finds the value of β(m′(e), e). Of course, Oscar does not know the value
of m′(e).

In a similar manner, Oscar sends each of the polynomials

e, Xe, X2e, X3e, . . . , XN−1e

to Bob and obtains the values β(m′(Xie), Xie) for i = 0, 1, . . . , N − 1. We now
observe that

m′(Xie) = ((f ∗Xie mod q) mod 2) ∗ (f−1 mod 2)

= Xi ∗ ((f ∗ e mod q) mod 2) ∗ (f−1 mod 2)

= Xim′(e)

February 2006

NTRU Cryptosystems Technical Report #019 5

Thus Oscar has determined β(Xim′(e), Xie) for i = 0, 1, . . . , N − 1, so he knows
the time trail T (m′(e), e) of the pair (m′(e), e).

Oscar now searches his precomputed list and, with reasonable probability, finds
a small number of possibilities for (m′(e), e). In other words, Oscar now has a known
polynomial e and a known polynomial m′ so that when Bob decrypted e, Bob got m′

as the message representative. Hence Oscar knows that there is an equation of the
form

m′ ∗ f ≡ (f ∗ e mod q) (mod 2). (1)

(More precisely, Oscar knows e and he has a small list of possible m′, one of which
satisfies (1). In Section 4 we discuss how Oscar can disambiguate between the pos-
sible m′ in a plausible attack scenario.) Equation (1) certainly contains a significant
amount of information concerning Bob’s private key f , although exploiting this in-
formation will depend on the specific form of e. For example, if the elements of E
consist of polynomials with very few nonzero coefficients, then equation (1) may
give information concerning the spacing between the nonzero coefficients of f . In
Section 4 we describe a specific collection E that leads to a practical hash timing
attack when the key f has the form f = 1 + pF . (This form is sometimes used to
decrease decryption time.)

§4. A practical hash timing attack for f = 1 + 2F — Theory

For this section we consider the case where p = 2, so q is necessarily odd, and where
private keys have the form

f = 1 + 2F for some binary polynomial F .

The parameters recommended by NTRU Cryptosystems currently take this form
[2,3]. Note that f−1

2 = (f mod 2)−1 is equal to 1, so the formula that Bob uses to
recover the message representative m′ from a ciphertext e simplifies to

m′(e) = (f ∗ e mod q) mod 2. (2)

For later computations, we write F =
∑

FiX
i with Fi ∈ {0, 1}, and for any i ∈ Z,

we let Fi denote the coefficient F(i mod N).
Let λ = 2dq/8e be the smallest even integer that is larger than q/4. To mount

the attack, Oscar uses the set of (bogus) ciphertexts defined by

E =
{
λ + λXi : 1 ≤ i < N

}
.

In other words, the e ∈ E are polynomials with two coefficients equal to λ and all
other coefficients equal to 0.

February 2006

NTRU Cryptosystems Technical Report #019 6

We now need to figure out the possible values of m′(e) that arise in (2) when
Bob decrypts the ciphertexts in E . During decryption, Bob first computes

a = f ∗ e mod q

≡ (1 + 2F) ∗ (λ + λXi) (mod q)

≡ λ + λXi +
N−1∑

j=0

2λ(Fj + Fj−i)Xj .

Thus the jth coefficient of a is given by

aj =





λ(1 + 2F0 + 2F−i) mod q if j = 0,
λ(1 + 2Fi + 2F0) mod q if j = i,
λ(2Fj + 2Fj−i) mod q if j 6= 0, i.

(3)

The key observation is that since λ = 2dq/8e is just slightly larger than q/4, the
quantities on the righthand side of (3) are between 0 and q−1 unless Fj = Fj−i = 1,
in which case they are greater than q. Thus there is nontrivial reduction modulo q
if and only if Fj = Fj−i = 1, which implies that

aj =
{

λ, 2λ, or 3λ if Fj = 0 or Fj−i = 0,
4λ− q or 5λ− q if Fj = Fj−i = 1.

The next step is to reduce a modulo 2, which yields the message representa-
tive m′(ei) for the (bogus) ciphertext ei = λ + λXi. Recalling that λ is even
and q is odd, we see that

aj mod 2 =
{

0 if Fj = 0 or Fj−i = 0,
1 if Fj = Fj−i = 1.

This gives the following explicit description of m′(ei):

m′(ei) =
N−1∑

j=0

(1 if Fj = Fj−i = 1
0 otherwise

)
Xj ,

which in turn yields the following partial information about F :

F (ei) =
N−1∑

j=0

(
1 if m′(ei)j = 1 or m′(ei)j+i = 1
0 otherwise

)
Xj ,

Therefore, every m′ with dm′ ones that Oscar can recover will directly yield 2dm′

non-zero coefficients of F , allowing him to reduce the search space for F and possibly
to recover F completely.

February 2006

NTRU Cryptosystems Technical Report #019 7

Now we consider the amount of precomputation that Oscar must carry out in
order to mount the attack. We claim that m′(ei) tends to have a comparatively
small number of nonzero coefficients. More precisely, suppose that we take F to lie
in the set BN (d) of binary polynomials having d ones and N − d zeros. Then the
average number of ones in m′(ei) as F ranges over BN (d) is

d(d− 1)
N

.

(We give the derivation of this formula in Section A.2.)
So if Oscar takes M = BN (δ) with δ ≈ (d2 − d)/N , then there is an approx-

imately 50% chance that m′(ei) appears in M. And if Oscar takes a somewhat
larger value for δ, he can significantly increase the probability of success. Of course,
the cost is that Oscar’s time and space requirements for the precomputation are on
the order of

#M ·#E = N ·#BN (δ) = N

(
N

δ

)
.

However, as we will see in the next section, there are NTRUENCRYPT parameter
sets for which this number is considerably smaller than the associated security level.

With these preliminaries, we can now describe Oscar’s attack.

(1) Choose a value δ somewhat larger than (d2 − d)/N .
(2) Let E = {ei = λ + λXi : 0 ≤ i < N} and M = BN (δ).
(3) Precompute and store in a suitably searchable database the time trails T (m′, e)

for every m′ ∈M and every e ∈ E .
(4) For each i, send ei, Xei,. . . ,XN−1ei to Bob and use the decryption times to

determine the time trail T (m′(ei), ei) as described in Section 3.
(5) Search the database to determine m′(ei), either exactly or up to a small number

of choices. (This will generally succeed for 50% or more of the ei, depending
on the size of δ.)

(6) Use the resulting values of m′(ei) to reconstruct F , either by an exact compu-
tation or by cutting down on the search space for F and performing a direct
search of that subset.

Remark. For convenience, we have restricted attention to a small set of (bogus) ci-
phertexts E . If several of the ei = λ+λXi in E lead to message representatives m′(ei)
that are not in Oscar’s database, he may not obtain enough information to recover
the private key faster than is obtained by other attacks. In this case, Oscar can
mount a similar attack using more general two term binary polynomials

λ1 + λ2X
i.

He simply takes λ1 and λ2 to be even integers in the vicinity of q/4 and satisfying
λ1+λ2 > q/2. This leads to a plentiful supply of (bogus) ciphertexts whose message
representatives have a good chance of lying in M = BN (δ).

February 2006

NTRU Cryptosystems Technical Report #019 8

Now consider the case where where T (m′
1, e) = T (m′

2, e) and e = λ + λXι for
some ι. Oscar has determined the time trail T (m′(e), e) and wishes to determine
whether m′(e) = m′

1 or m′
2. He picks a new ciphertext of the form e′ = λ1 + λ2X

ι

and calculates T (m′
1, e

′), T (m′
2, e

′). Since

(e ∗ f) mod q mod 2 = (e′ ∗ f) mod q mod 2 ,

Oscar knows that m′(e′) = m′(e) = m′
1 or m′

2. With high probability T (m′
1, e

′) 6=
T (m′

2, e
′), so determining T (m′(e′), e′) will allow Oscar to work out which of m′

1

and m′
2 is equal to m′(e′).

§5. A practical hash timing attack for f = 1 + 2F — Practice

In this section we evaluate the practicality of the attack described in Section 4
for some specific NTRUENCRYPT parameter sets that appear in [3]. This depends,
among other things, on the probability that different inputs require a greater or
lesser number of SHA calls. We begin by describing how [3] uses SHA to compute r
and then we compute the probability that this process takes a varying number of
SHA calls.

The blinding value r, which is a binary polynomial with exactly dr ones, is
created from a hash function via repeated calls to some version of SHA. Here is the
process as described in [3]:
(1) Fix a value of c satisfying 2c > N . This value of c is specified in [3] for each of

the sample NTRUENCRYPT parameter sets. Also let

b = dc/8e and n = b2c/Nc

Thus b is the smallest integer such that b bytes contains at least c bits. (In
practice, b will be 1 or 2.) Similarly, nN is the smallest multiple of N that is
less than 2c.

(2) Call the specified version of SHA and break the output into chunks of b bytes
each. Within each b byte chunk, keep the lower order c bits and discard the
upper order 8b − c bits. Convert the lower order c bits into (little endian)
integers i1, i2, . . . , it. (Here t is the integer such that the output of the specified
version of SHA consist of tb bytes.) This process of splitting the output from
SHA is illustrated in Figure 1.

(3) Create a list of indices j1, j2, . . . by looping through the list of i values from (2).
If i < n and i mod N is not already in the list, the adjoin i mod N to the list,
otherwise discard i. Continue until the list contains dr values of j. If at any
point you run out of i values, then call SHA and create additional i values
as specified in (2). The complete r generation algorithm is illustrated with
pseudocode in Figure 2.

February 2006

NTRU Cryptosystems Technical Report #019 9

i1 i2 it
. . .

c bits c bits c bits︸ ︷︷ ︸
b bytes

︸ ︷︷ ︸
b bytes

︸ ︷︷ ︸
b bytes

Figure 1. Converting SHA output into c bit integers

(1) jList = { }
(2) Call SHA to get i1, i2, . . . , it
(3) Loop α = 1, 2, . . . , t
(4) If iα < n and (iα mod N) /∈ jList

then adjoin iα mod N to jList
(5) If jList contains dr elements, then exit
(6) End α loop
(7) Go to Step (2) to get more i values

Figure 2. Generating r from SHA output

This description makes it clear why the number of calls to SHA may vary for
different input values. If we treat the list of numbers i1, i2, . . . as a random sequence
of integers in the range 0 ≤ i < 2c, the fundamental probabilities that we need to
compute are

PC,N,n(L, d) = Prob




A set of L randomly chosen integers i ∈ [0, C)
includes exactly d numbers satisfying both
i ∈ [0, nN) and the values are distinct modulo N




It is not hard to find a recursive formula that allows one to compute PC,N,n(L, d)
reasonably quickly. See Section A.3 for details.

In order to generate r, the algorithm described in Figure 2 needs to create a
list of dr distinct numbers satisfying 0 ≤ i < N . Each time the algorithm calls
SHA, it gets t numbers satisfying 0 ≤ i < 2c. Hence the probability that it suffices
to call to SHA s times is equal to the probability that st random numbers in the
range [0, 2c) contain at least dr values in [0, n) whose values modulo N are distinct.
Hence

Prob(s calls to SHA suffices) = Prob




st randomly chosen integers in [0, 2c)
includes at least dr values in [0, n)
that are distinct modulo N




=
∑

dr≤d≤st

P2c,N,n(st, d).

In Table 1 we have assembled the NTRUENCRYPT parameters from [3] and
computed the values of s such that it is most likely to take either s or s + 1 calls

February 2006

NTRU Cryptosystems Technical Report #019 10

to SHA in order to generate r. The probabilities are listed in the last column of
the table. The closer that the first probability is to 50%, the better that attack
described in this note works. We see from the table that the attack will probably
work best for the N = 787 parameter set, which [3] indicates gives a 256 bit security
level.

Bit SHA
Security N dr bits c b n t s : Prob(s SHA calls suffices)

80 251 48 160 8 1 1 20 3 : 98.14% 4 : 100.0%

112 347 66 160 14 2 47 10 7 : 15.65% 8 : 98.48%

128 397 74 160 11 2 5 10 8 : 12.77% 9 : 95.10%

160 491 91 160 9 2 1 10 10 : 13.87% 11 : 91.32%

192 587 108 256 11 2 3 16 8 : 4.52% 9 : 82.38%

256 787 140 256 12 2 5 16 10 : 53.04% 11 : 99.85%

Table 1. The probability that s calls to SHA generates r

Finally, we use the probabilities in Table 1 and the other material described in
this note to calculate the chances that a time trail uniquely determines a message
representative m′ and give an approximate size for Oscar’s database in order to
apply the attack. We present the resulting information in Table 2. The last column
of Table 2 gives the approximate space and time requirements for the attack. Al-
though the listed numbers are fairly large, they are considerably smaller than the
security levels suggested in [3]. Thus if an attacker is in a position to measure the
number of SHA calls, then the bit security is reduced by anywhere from 30 bits for
N = 251 to 100 bits for N = 787.

§6. Conclusions and recommendations

We have described a timing attack on the implementation of NTRUENCRYPT de-
scribed in [3]. The attack relies on the fact that decryption of different (possibly
bogus) ciphertexts may require a different number of calls to a hash function such as
SHA-1 or SHA-256. We draw some conclusions and make some recommendations.
(1) Although we have only described an attack that relies on keys of the special

form f = 1+pF , it is reasonable to assume that similar attacks are possible for
more general keys. Thus the use of general keys is not a recommended method
to thwart hash timing attacks on NTRUENCRYPT.

(2) In order to prevent hash timing attacks, it suffices to make sure that almost
all decryptions require the same number of SHA calls. This can be accom-
plished by fixing a parameter KSHA so that almost all inputs (m′, e) require

February 2006

NTRU Cryptosystems Technical Report #019 11

Bit dr

Security N dF Pextra Pnonunique ν̄i(dF)

(
N

dν̄ie
)

80 251 48 1.86% 2−13.5 8.988 253.1

112 347 66 84.35% 2−154 12.36 276.8

128 397 74 87.23% 2−144 13.61 284.8

160 491 91 86.13% 2−193 16.68 2103.2

192 587 108 95.48% 2−76 19.69 2122.4

256 787 140 46.96% 2−783 24.73 2156.3

Table 2. Data for various for NTRUENCRYPT parameter sets
Pextra = Probability of needing an extra hash call (see Table 1)
Pnonunique = Probability that a time trail is not unique
ν̄i(dF) = Average number of j with Fj = Fj−i = 1(

N
dν̄ie

)
= Number of m′ in attacker’s database

at most KSHA SHA calls and then performing extra SHA call(s) if necessary
so that almost all inputs require exactly KSHA SHA calls. Here, we can put a
more concrete meaning on “almost all” by requiring that at the k-bit security
level, there is a chance of 2−k that a given (m′, e) has β(m′, e) = 1. This yields
the values given in Table 3 for KSHA.

Bit Expected
Security N SHA calls KSHA

80 251 3 6

112 347 8 15

128 397 9 17

160 491 11 22

192 587 9 20

256 787 10 21

Table 3. Recommended number of SHA calls for different security levels.

Note that this recommendation will require an attacker to expend more than
2k machine cycles to mount the attack, first because a SHA call takes more than
one operation, and second because each attack involves KSHA > 1 SHA calls.

February 2006

NTRU Cryptosystems Technical Report #019 12

(3) The method used to generate r from (m′, e) in [3] is easy to implement, but
it is somewhat wasteful of the pseudorandom bits produced by SHA. It might
be worthwhile to look for more efficient ways to generate r which might also
use a fixed number of calls to SHA, thereby eliminating the possibility of a
hash timing attack. However, we note that the use of a new r-generation
method would require changes to the exisiting standards, while equalization
of the number of SHA calls as in (2) is a simple implementation change that
maintains current standards.

APPENDICES

§A.1. Probability that two message representatives have the same time
trail

A time trail is a binary vector of dimension N . We let P denote the probabilty that
a randomly chosen coordinate is equal to 0, so 1−P is the corresponding probablity
that a randomly chosen coordinate is equal to 1. Then the probability that (say)
the first coordinates of two random time trails agree is

Prob(both 0) + Prob(both 1) = P 2 + (1− P)2 = 1− 2P + 2P 2.

In order for two entire time trails to be identical, they must agree on all N of their
coordinates. Hence

Probability that two Time Trails coincide = (1− 2P + 2P 2)N .

Therefore for any given e ∈ E and m′ ∈ M, the probability that there exists some
other message representative m′′ ∈M with T (e,m′′) = T (e,m′) is approximately

#M · (1− 2P + 2P 2)N .

§A.2. The average number of ones with a given separation distance

Let BN (d) be the set of binary polynomials of degree less than N with exactly d
ones and N − d zeros. Fix i. We are interested in the average number of j such
that Fj and Fj−i are both equal to 1, as F ranges over BN (d). For a given F and i,
we denote the number of such j by

νi(F) = #{0 ≤ j < N : Fj = Fj−i = 1}.

February 2006

NTRU Cryptosystems Technical Report #019 13

Clearly ν0(F) = d for every F ∈ BN (d). We now fix some 1 ≤ i < N and
compute the average value ν̄i(d) of νi(F) as F ranges over BN (d).

ν̄i(d) = Average
F∈BN (d)

νi(F) =
(

N

d

)−1 ∑

F∈BN (d)

νi(F)

=
(

N

d

)−1 ∑

F∈BN (d)

N−1∑

j=0

FjFj−i

=
(

N

d

)−1 N−1∑

j=0

∑

F∈BN (d)

FjFj−i

=
(

N

d

)−1 N−1∑

j=0

#
{
F ∈ BN (d) : Fj = Fj−i = 1

}

=
(

N

d

)−1 N−1∑

j=0

(
N − 2
d− 2

)

=
(

N

d

)−1

N

(
N − 2
d− 2

)

=
d(d− 1)

N
.

This proves the formula cited in Section 4.
We also observe that νi(F) appears as a coefficient of the product F ∗ F rev,

where the reversal F rev of F is the polynomial F rev =
∑

F−iX
i. Thus

F ∗ F rev =
N−1∑

j=0

N−1∑

k=0

FjF−kXj+k =
N−1∑

i=0

N−1∑

j=0

FjFj−iX
i =

N−1∑

i=0

νi(F)Xi.

Thus knowledge of νi(F) for 0 ≤ i < N is equivalent to knowledge of the product F ∗
F rev. Using this value and the public key h = f−1 ∗ g mod q, there are practical
methods for recovering F . In any case, it is certainly true that each valid (r,m′)
pair that Oscar finds contains significant information about the private key f , and
there are numerous ways to exploit such information in order to recover f directly
(if one has enough (r,m′) pairs) or by cutting down the search space for f .

February 2006

NTRU Cryptosystems Technical Report #019 14

§A.3. The probability of choosing distinct values in a given range

In this section we describe a recursion that can be used to compute the probability

PC,N,n(L, d) = Prob




A set of L randomly chosen integers i ∈ [0, C)
includes exactly d numbers satisfying
i ∈ [0, nN) and whose values are distinct modulo N




We obtain a recursion from the observation that PC,N,n(L, d) equals the sum of the
following two quantities:
• The probability after L− 1 picks of having d− 1 values in [0, nN) that are dis-

tinct modulo N multiplied by the probability of picking an integer in [0, nN)
multiplied by the probability that it does not a repeat a previous values mod-
ulo N .

• The probability after L− 1 picks of having d values in [0, nN) that are distinct
modulo N multiplied by the probability of picking an integer that either is not
in [0, nN) or whose value modulo N repeats a previous value.
We observe that for the first case, the probability of picking an integer in [0, nN)

multiplied by the probability that it does not a repeat a previous values modulo N
is

nN

C
· N − (d− 1)

N
=

n(N − d + 1)
C

.

For the second case, there are C−nN integers in [0, C) that are not in [0, nN), and
there are nd integers in [0, nN) that are in one of the d congruence classes modulo n
that have already been selected, so the probability of picking an integer that either
is not in [0, nN) or whose value modulo N repeats a previous value is

C − nN + nd

C
= 1− n(N − d)

C
.

This yields the recursion formula

PC,N,n(L, d) = PC,N,n(L− 1, d− 1) ·
(

n(N − d + 1)
C

)

+ PC,N,n(L− 1, d) ·
(

1− n(N − d)
C

)

Combining this recursion with the obvious initial values

PC,N,n(L, d) = 0 if L < d and PC,N,n(L, 0) =
(

1− nN

C

)L

,

it is an easy matter to compute PC,N,n(L, d) if the parameters are not too large.

February 2006

NTRU Cryptosystems Technical Report #019 15

References

[1] J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key
cryptosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June
1998, Lecture Notes in Computer Science 1423, J.P. Buhler (ed.), Springer-
Verlag, Berlin, 1998, 267–288

[2] J. Hoffstein, J.H. Silverman, Optimizations for NTRU, Public Key Cryp-
tography and Computational Number Theory (Warsaw, Sept. 11–15, 2000),
Walter de Gruyter, Berlin–New York, 2001, 77–88.

[3] N. Howgrave-Graham, J. H. Silverman, W. Whyte Choosing Parameter Sets
for NTRUEncrypt with NAEP and SVES-3, Topics in cryptology—CT-RSA
2005, 118–135, Lecture Notes in Comput. Sci., 3376, Springer, Berlin, 2005.
www.ntru.com/cryptolab/articles.htm#2005 1

Comments and questions concerning this technical report should be addressed to
info@ntru.com

Additional information on NTRU Cryptosystems, Inc., the NTRU Public Key Cryp-
tosystem (NTRUENCRYPT) and the NTRU Signature Scheme (NTRUSIGN) are
available at

www.ntru.com

NTRU, NTRUENCRYPT, and NTRUSIGNare trademarks of NTRU Cryptosystems, Inc.

The NTRU Public Key Cryptosystem (NTRUENCRYPT) is patented, and the NTRU Signature Scheme

(NTRUSIGN) is patent pending.

The contents of this technical report are copyright February 2006 by NTRU Cryptosystems, Inc.

February 2006

