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Abstract. We describe a theoretical method for estimating the decryp-
tion failure probability for NTRUENCRYPT with different centering al-
gorithms. We apply this method to a suggested parameter set and com-
pare it with experiment. For the recommended parameter sets in [1], the
chance of a decryption failure is less than 27190,

1 NTRUEncrypt parameters and basic definitions

An implementation of the NTRUENCRYPT Public Key Cryptosystem [3] is spec-
ified by the following parameters:

N Degree Parameter. A positive integer. The associated NTRU
lattice has dimension 2N.
q  Large Modulus. A positive integer. The associated NTRU lat-
tice is a convolution modular lattice of modulus gq.
p  Small Modulus. An integer or a polynomial.
S, Sy Private Key Spaces. Sets of polynomials from which the private
keys are selected.
Sm,Sr  Plaintext Spaces. Sets of polynomials from which the (padded
and encoded) plaintexts are selected.

Definition 1. Most operations take place in the Ring of Convolution Polyno-
mials

Z[X]
v -1

Multiplication of polynomials in this ring corresponds to the convolution product
of their associated vectors:

R=

(X)) =a(X) xb(X) with crp = Z a; * b
i+j=Fk( mod N)



Remark 1. The following two parameter selection criteria are vital for secure
implementation of NTRUENCRYPT, although encryption and decryption will
work even if they are violated.

— The degree parameter N must be prime. (See [2].)
— The small and large moduli p and ¢ must be relatively prime in the ring R.
Equivalently, the three quantities

b, q, XN_l

must generate the unit ideal in the ring Z[X]. (In the extreme case that p
divides ¢, the plaintext can be recovered directly by reducing the ciphertext
modulo p.)

Definition 2. A polynomial a(X) = ag + a1 X + -+ an_1 XV~ is identified
with its vector of coefficients a = [ag, a1, . ..,an—1]. The mazimum and minimum
coefficients of a polynomial or vector are are denoted by

Max(a(X)) = max{ag,a1,- - ,an—1} and Min(a(X)) = min{ag,as, - ,an—1}.

The width of a polynomial a(X) is the difference between its largest and smallest
coefficients,
Width(a(X)) = Max(a(X)) — Min(a(X)).

2 NTRUEncrypt basic operations

2.1 Key generation

An NTRUENCRYPT Private Key is a pair (f,g9) € Sy x S;. The associated
NTRUENCRYPT Public Key is a polynomial h € R satisfying

f*h=pxg (mod q).

Generally, f will be chosen to be invertible modulo g. If we let f~ I denote the
inverse of f in the quotient ring R/qR, then h = px f;l*g (mod q). For practical
purposes, only the polynomial f is needed for decryption.

2.2 Encryption

The plaintext M and additional random bits R are used to select a pair of
encoded plaintext polynomials (r,m) € S, x S,,, according to a public encoding
scheme £. A minimal property of £ is that knowledge of (r,m) allows easy
recovery of M. In practice, £ will have the property that knowledge of m alone
allows easy recovery of M and R, from which r may be recomputed using &.
The ciphertext e is the polynomial

e=rxh+m (mod q).



2.3 Decryption
Decryption consists of the following steps:
1. Compute the polynomial
a=fxe (modq) (1)

and place the coefficients of a into an appropriate interval modulo ¢ by use
of an appropriate centering method, as described below in Section 2.4.
2. Reduce a modulo p and compute

b:fp’l*a (mod p), (2)

where fp’1 is the inverse of f modulo p, i.e., in the ring R/pR.
3. Identify m as the (unique) element in S,, with the property that

m=b (mod p).

4. Reverse the encoding process £ to recover the plaintext M and randomiz-
ing bits R. This completes the decryption process, but one normally also
performs the following validation step.

5. Use £ to regenerate r and check that r * h +m (mod ¢) agrees with e.

Remark 2. Tt is possible to eliminate Step 2 of the decryption algorithm by
choosing the private key polynomial f to have the form

f=1+4+pxF.

This may significantly improve efficiency [4]. However, the target lattice vector
for the underlying closest vector problem changes from (f, g) to (F,g), so when
using this form of f, one must analyze the difficulty of solving the modified
vector problem.

We see how decryption works by considering (1) above. Using the definitions
of e, h, we obtain

a=pxr*xg+ f*xm (mod q) . (3)

Because the polynomials r, g, f, m are small, their products will in general
have low width. Thus we can find a mod ¢ interval such that (3) is an exact
equality. If we have selected the correct interval, (2) will clearly recover m. If we
have selected the wrong interval, the recovered value will differ from m by some
multiple of ¢ (mod p). A decryption failure will occur if Width(pxrxg+ f*m) > ¢
(we refer to this as a gap failure), or if Width(pxr* g+ f *m) < g but we have
reduced into the wrong interval (we refer to this as a wrap failure). The concern
of this paper is to estimate the probability of decryption failures. In order to do
this, we must consider how the reduction interval is chosen.



2.4 Centering Methods and Decryption Failures

We here consider the problem of choosing the correct interval for the coefficients
of a = fxe (mod q).
First, we note that if a is reduced into the correct interval, then

a(l) =p-r(1)-9(1) + f(1) -m(1) .

In practice, f, g, are chosen from sets of binary polynomials for which one knows
the values of f(1),¢g(1),7(1). Thus if the decryptor knows the value of m(1), he
knows p-r(1) - g(1) + f(1) - m(1) and can choose the mod ¢ interval such that
a(1) is equal to this value.

Notice that the ciphertext at X = 1 has the value

e(l)=r(1)-h(1)+m(1) (mod gq). (4)

Further, the average value of m(1) is N/2. Thus the decryptor should compute
the value of m(1) satisfying the congruence (4) and lying in the interval

N — N
— <m(1) < ;q. 5)

Remark 3. It is important that the encryptor is not able to generate allowable
values of m that do not satisfy (5). In practice, the polynomial m is masked
using a hash function, so the encryptor has no control over its form. Thus the
relevant quantity is the probability that a random binary polynomial m does not
satisfy (5). The value of m(1) as m varies is simply the sum of N independent
binary random variables, so m(1) follows a binomial distribution. Hence

NI_ g\ _ Ny L M.
Prob(‘m(l)—E z§>—x<(2 2<$) > 2(;5)

<(N—q)/ z>(N+q)/

Note that randomness is added to the message on encryption, so if the masking
process results in a value of m(1) that is too large or too small the encryptor
can simply select a different random string and try again.

These observations prompt the following centering method, which we call
centerl, and which corresponds to the method center1 in [7].

1. Calculate m(1) as e(1) —r(1) - h(1) (mod g), reduced into the interval given
by (5).

2. Denote a reduced into the range [0,¢ — 1] by a. (The underline is intended
to suggest “reduced into the lowest range possible”).

3. Calculate a(1). This will differ from p - (1) - g(1) + f(1) - m(1) by kg, for
some integer k.

4. Add q to the lowest k entries of g to obtain a reduced into the correct interval.



This centering method will always recover p*r*g+ f*m exactly, unless there
is a gap failure. To see why, assume that the width of @ (mod ¢) is w, and assume
that @ (mod ¢) has been reduced into the correct range such that a(1) = S, which
will be the case when this algorithm has run. Then either pxrx g+ fxm =a
exactly, or pxr* g+ f*m =a+ k *q, where k(1) = 0, i.e. k has some positive
and some negative terms. The effect of adding k * ¢ to a will be to produce an a’
with a width of at least 2¢ — w; but this is greater than . Therefore the above
method will only give a decryption failure if Width(p*7 % g+ f *m) > ¢, which
gives a gap failure.

We also consider the following slightly more efficient, but less reliable, center-
ing algorithm, which we call center2. This method corresponds to the method
center2 in [7].

1. Calculate m(1) as e(1) —r(1) - h(1) (mod q), reduced into the interval given

by (5).
2. Calculate the average value of the coefficients of a, correctly centered, as

a:{pWU%MU+fﬂ%mﬂwl

N
3. Reduce a into the interval [a — ¢/2,a + q/2).

This algorithm will give a decryption failure if any coefficient of prg + fm
differs from a by more than ¢/2. Note that if @ < ¢/2 we could choose to reduce
always into the interval [0, q — 1]; however, this is not specified in [1,7].

2.5 A typical parameter set

An NTRUENCRYPT parameter set is described by specifying three integers (N, p, q),
four sets of polynomials (Sy,S,,Sr,Sm), and a centering method for use in de-
cryption. (It is also possible to take p to be a polynomial, for example p = X +2.)
We set some notation to be used in specifying the sets of polynomials.

R The set of binary polynomials in R = Z[X]/(XN —1).
R(d)  The set of binary polynomials in R with exactly d ones and
N — d zeroes.

The parameter set that we will use for illustration in this article has

F,g,r € R(72), m € R, centering method: center?2.
This is the parameter set ees251ep4 in [1].

We note that for this parameter set, the probability that m(1) fails to sat-
isfy (5) is

251 2
Prob <‘m(1) — % > ?) Ay 920754



However, if we used a smaller value of ¢, for example ¢ = 128, then the probability
would be considerably larger,

251 128
Prob (‘m(l) — T > T) ~ 2_51'7.

3 Estimating failure probabilities

NTRUENCRYPT decryption will fail when the centering method fails to cor-
rectly recover prg + fm. It has recently been shown [6,8,10] that decryption
failures leak significant information about the private key. Additionally, [6, 10]
note that a significant probability of decryption failures on validly encrypted
messages makes it impossible to construct a meaningful proof of security, and [7]
proposes a padding scheme for which a proof of security can be given even in
the presence of decryption failures, so long as their chance of occurring is very
low. It is therefore interesting and important to be able to accurately estimate
the probability of a decryption failure. In this section, we evaluate methods for
determining this probability for both of the centering methods presented above.
(This has previously been studied, though in less depth, in [11].)

We describe a theoretical method for evaluating coefficient and width proba-
bilities when m is binary and f, g, and r are binary with a fixed number of ones.
We then compare our theoretical formulas with experimental results, using the
parameter set described in Section 2.5 We will see that theory and experiment
are in close agreement.

3.1 Theoretical coefficient distribution of products of binary
polynomials

In NTRUENCRYPT, we are interested in the distribution of the coefficients of
a(X) =p*r(X) x g(X) + f(X) * m(X).

Recall that R denotes the set of binary polynomials in R and R(d) is the set
of binary polynomials in R with exactly d ones and N — d zeroes. For typical
parameter sets, r(X), g(X) and f(X) are chosen to have a fixed number of
ones and the “plaintext” m(X) is a random binary polynomial. However, we are
interested in the probability that the spread of coefficients in a(X) is large, so it
is prudent to assume that the attacker chooses m(X) to maximize this spread.
If m(X) has many ones, then all of the coefficients of a(X) will tend to be larger,
and similarly if m(X) has few ones, then all of the coefficients of a(X) will tend
to be smaller. A brief examination of the binomial distribution shows that the
spread from largest coefficient to smallest coefficient, or from the average to the
largest or smallest coefficient, in f(X) * m(X) will be largest if m(X) has an
equal number of zeros and ones. We will thus suppose that f, g,r,m are chosen
from the sets

F(X) e R(dy),  g(X)€Rd,), r(X)eRd), mX)eRdn),



where in practice we will take d,, = | N/2].

For any polynomial P(X) chosen from some space of polynomials, we let Coef (P)
denote a randomly chosen coefficient of P; and similarly we let Coef’(P) denote
some other randomly chosen coefficient of P.

We consider first the distribution of the coefficients of a product f *m. A
coefficient of f+m is formed by adding up d,,, elements chosen at random without
replacement from a pool of dy ones and N —dy zeros. Thus each coefficient of f+m
satisfies a hypergeometric distribution,

(%) (2. )

(4.

Next we turn to the product 7 * g. The analysis is identical, only the param-
eters have changed. Thus each coefficient of r % g satisfies

(v) (5.%)

(a,)

We really need the coefficient distribution for the triple product p *r x g. If p is
an integer, the distribution of coefficients is again hypergeometric, although the
values only take on the multiples of p. If p is not an integer, say p = X + 2, the
analysis is similar, but a bit more complicated. For simplicity of exposition, and
for consistency with the parameter sets in [1], we will restrict ourselves to the
case that p is an integer.

Finally we turn to coefficients of the quantity

Prob(Coef(f *m) = u) = (6)

Prob(Coef(r x g) = v) = (7)

a=p*xrxg+ f*m.

The coefficients of p * r x g and f * m are certainly independent of one another,
so we find that

Prob(Coef(pxrx g+ f *xm) = x)

= Prob(Coef(p * 7 x g) = 2 — 8) - Prob(Coef (f xm) = §). (8)
B

Remark 4. When implementing these formulas, much time may be saved by
summing only over the values for which the associated probabilities are nonzero.
For example,

(%) (2 2a)

(a.)

are nonzero, respectively, only for

(%) (5. %)

(a.)

Prob(Coef(f*m) = u) = and Prob(Coef(rxg) = v) =

max{0, d,,,+dy—N} < u < min{d,,,ds} and max{0,d,+d;—N} < v < min{d,, d, }.



3.2 Coefficient distributions for polynomials whose coefficients are
independent random variables

Let ¢(X) € Z[X] be a polynomial whose coefficients are chosen independently
according to some known probability distribution. In other words, for each value
of t one knows the value of the probability Prob(c, = t), and this value is
independent of the choice of index k. Then the probability that the largest
coefficient of ¢(X) is larger than a given value T may be computed by the
following formula.

Prob(Max(c(X)) > T)
=1 - Prob(Max(¢(X)) < T)
=1—Prob(co <T)-Prob(c; <T)---Prob(ey_1 <T)
=1 — Prob(c; <T)V
=1—(1—Prob(c; > T)N

N
=1- (1 — ) " Prob(cy = t)) .

t>T

The probability that the smallest coefficient of ¢(X) is smaller than 7" may be
computed by the analogous formula

N
Prob(Min(¢(X)) <T)=1- (1 - Z Prob(cy, = t)) .

t<T

The width of a polynomial is the difference of its maximum and minimum coef-
ficients, so

Prob(Width(e(X)) > T) = Z Prob(Min(¢(X)) = t) Prob(Max(¢(X)) > T + t).

Note that the probability that Min(c(X)) equals ¢t may be computed (using the
earlier formulas) as the difference

Prob(Min(¢(X)) = t) = Prob(Min(¢(X)) < t + 1) — Prob(Min(¢(X)) < t).

3.3 Theoretical width distributions of sums and products of binary
polynomials

Throughout this section, we let
a=pxrxg+ fxm

with p an integer. We denote by Max(a), Min(a), and Width(a) the random
variables that, respectively, assign to a polynomial a the maximum, minimum,
and width of its coefficients, where

Width(a) = Max(a) — Min(a).



We now make the (slightly incorrect) assumption that the coefficients of a are
independent. This independence assumption is discussed below in Section 3.5.
Under this assumption, we compute

Prob(Max(a) > u) = 1 — Prob(Max(a) < )
=1 — Prob(Coef;(a) < u for all 0 < i < N)
~ 1 — Prob(Coef(a) < p)¥
= 1— (1 — Prob(Coef(a) > )"
Note that the quantity Prob(Coef(a) > p) may be computed as
Prob(Coef(a) > u) = Z Prob(Coef(a) = x),
T

where the individual probabilities Prob(Coef(a) = ) in the sum are given by (8).
Finally, we compute

Prob(Max(a) = u) = Prob(Max(a) > p) — Prob(Max(a) > p + 1).

Remark 5. Expanding the quantity (1 — Prob(Coef(a) > ,u))N using the bino-
mial theorem, we see that if Prob(Coef(a) > p) is small, then

Prob(Max(a) > u) ~ N Prob(Coef(a) > p).

This makes sense, since it is unlikely there will be more than one coefficient larger
than . Similarly, the main term for Prob(Max(a) = u) is N Prob(Coef(a) = p).
If we take the first two terms in the expansion, we get

2
_N ;N Prob(Coef(a) = )

x [Prob(Coef(a) > p) + Prob(Coef(a) > p + 1)].

Prob(Max(a) = u) ~ N Prob(Coef(a) = u)

The importance of the second order terms depends on the relative sizes of N
and the various probabilities.

An analogous calculation gives us formulas for the probability distribution
of the minimum coefficient of a. Thus

Prob(Min(a) < v) = 1 — Prob(Min(a) > v)
=1 — Prob(Coef;(a) > v for all 0 < i < N)
~ 1 — Prob(Coef(a) > )N
= 1—(1 — Prob(Coef(a) < 1))
The quantity Prob(Coef(a) < v) may be computed as

Prob(Coef(a) < v) = Z Prob(Coef(a) = x),

z<v
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where the individual probabilities Prob(Coef(a) = ) in the sum are given by (8),
and finally

Prob(Min(a) = v) = Prob(Min(a) < v) — Prob(Min(a) < v —1).
It only remains to give a formula for the probability distribution of the

width of a. This is easy using the previously computed distributions for Max(a)
and Min(a) and the definition Width = Max — Min. Thus

Prob(Width(a) = w) = ZProb(MaX(a) = \) - Prob(Min(a) = A — w).
A

3.4 Probability Distributions for f =1+ p* F

As noted in Remark 2, it is often advantageous to select f to have the form

f =1+ px* F, since it eliminates one multiplication from the decryption process.

When f has this form, the polynomial a = p*xr * g + f * m becomes
a=px(rxg+ F*m)+m.

If m is binary and p is an integer, then the max and min probabilities satisfy

Prob(Max(a)
Prob(Min(a)

u) < Prob (Max(r g+ F xm) > |u/p]), (9)

>
<) < Prob(Min(r+g + F+m) < [(n+p—1)/p]). (10)
This allows us to calculate decryption failure probabilities when centering method
center? is used.

Additionally, the width of a satisfies
Width(a) < p* Width(r x g+ F*m) + 1, (11)

and hence
-1
Prob(Width(a) > q) < Prob (Width(r xg+ Fxm)> qT) . (12)

If m is a random binary polynomial, then (11) will be an equality at least 25% of
the time, so we lose very little in using the inequality (12) to estimate the proba-
bility of a given width. This allows us to calculate decryption failure probabilities
when centering method center1 is used.

Note that we do not need to derive new formulas to calculate the probability
distribution of Width(r * g + F' xm). Each of r, g, F, and m will be taken from
the set of binary polyomials with a fixed number of ones, so the formulas that
we derived earlier are the ones that we need, albeit with the letter f replaced
by the letter F'.
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3.5 The independence assumption

The formula for the width in the previous section was derived assuming that if
polynomials A(X) and B(X) are drawn at random from sets of binary polynomi-
als R(d4) and R(dp), then the coefficients of the product C'(X) = A(X)* B(X)
are independent. In fact, this is not exactly true. Intuitively, the fact that
C(1) = A(1)B(1) = dadp is constant implies that if some coefficient of C'(X)
is particularly large, then the others will be somewhat smaller than usual. Thus
the coefficients of C'(X) should be anticorrelated. Indeed, it is a simple exer-
cise to show that if 4 and j are distinct indices, then the correlation coefficient

between C; and Cj is
1
COI‘I‘(Ci, C]) = —m .

The effect of this should be that calculations of width probabilities based on
assuming the independence of the coefficients of a will tend to underestimate
the actual width probabilities, but if IV is large, the effect will be small. In
Section 4, we compare our theoretical results with the experimental ones to see
if this is in fact the case.

4 Theory and experiment for a typical parameter set

We recall the parameter set ees251ep4 from [1] described in Section 2.5:

(N, p,q) = (251,2,239), f=1+pxF,
F,g,r € R(72), m € R, centering method: center?2.

In this section we will use our theoretical formulas to compute probabilities for
max, min, and width for a = pxr x g+ f * m, and then we will compare these
values with the results of experiments.

As noted in Section 3.1, the width of a will be largest when m has an equal
number of ones and zeros. This will also give a for which we expect the great-
est difference between an individual coefficient and the average. We will thus
consider the case where m is chosen from the set

m € R(125).

We set
A=rxg+Fx*xm

and use the formulas from Section 3.1 to compute the probabilities
Prob(Max(A) > T, Prob(Min(A) < T), Prob(Width(A) < T).

Calculations were performed using Pari with 56 decimal places of precision.

As noted in Section 3.4, the probability of a decryption failure can be obtained
using (9) for centering method center2, or using (12) for centering method
centerl. For the particular parameter set in question, the average value of a
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coefficient of prg 4+ gfm is 113, and we have p = 2 and ¢ = 239 and are using
center2, so we are interested in the probability

Prob(Max(A) > [(113 4 239/2)/2]) = Prob(Max(A) > 116) .

We do not need to check the corresponding probability for Min, because Min < 0
and no coefficient of prg + fm can be less than 0. Looking at Table 2, we see
that

Prob(Fail(center2)) = Prob(Max(A4) > 116) < 271040

If we were to be using centerl, our failure criterion would be
Prob(Width(A4) > 119).

In this case, the probability of a decryption failure is even smaller. Indeed, Table 1
says that

Prob(Width(4) > 76) ~ 27809 and Prob(Width(A4) > 100) ~ 27562,

4.1 Comparison of theory and experiment

In this section we compare the results of experiments with our theoretical for-
mulas. We consider polynomials of the following form:

N=251, p=2, f=1+4+pF, meR125), F,g,re R(72).
We compare theoretical and experimental values for the width of
A=rxg+mxF.

The results are described in Table 4, and show good agreement.

We therefore conclude that for the recommended parameter sets, the chance
of a decryption failure is less than 271°°, considerably better than the desired
level of 2780,

5 Further Notes

This section outlines areas of continuing research.

— It would be useful to perform additional experiments to gather more accu-
rate data for extreme tail probabilities, and also to gather data for other
parameter sets.

— It would be interesting to study and quantify the effect of the existing weak
coefficient correlation on tail probabilities. Preliminary research, both the-
oretical and experimental, indicates that these effects are very small. How-
ever, more precise information could give greater assurance to the use of the
centerl centering method.



z |log,(Prob(Width(A) = z))|log,(Prob(Width(A4) > z))
16 —28.63203 —0.00000

18 —17.50276 —0.00000

20 —10.25059 —0.00014

22 —5.87059 —0.00802

24 —3.57235 —0.09962

26 —2.73942 —0.46465

28 —2.91087 —1.23985

30 —3.76420 —2.42182

32 —5.08934 —3.94546

34 —6.75736 —5.74646

36 —8.69158 —7.77791

38 —10.84601 —10.00830
40 —13.19193 —12.41644
42 —15.71049 —14.98781
44 —18.38897 —17.71241
46 —21.21891 —20.58354
48 —24.19498 —23.59709
50 —27.31421 —26.75088
52 —30.57532 —30.04418
54 —33.97822 —33.47726
56 —37.52360 —37.05106
58 —41.21264 —40.76694
60 —45.04689 —44.62659
62 —49.02811 —48.63187
64 —53.15827 —52.78484
66 —57.43946 —57.08768
68 —61.87396 —61.54275
70 —66.46419 —66.15253
72 —71.21275 —70.91966
74 —76.12239 —75.84698
76 —81.19607 —80.93749
78 —86.43695 —86.19439
80 —91.84843 —91.62112
82 —97.43414 —97.22136
84 —103.19798 —102.99904
86 —109.14416 —108.95841
88 —115.27721 —115.10404
90 —121.60203 —121.44084
92 —128.12394 —127.97417
94 —134.84869 —134.70980
96 —141.78258 —141.65406
98 —148.93245 —148.81381
100 —156.30582 —156.19659

Table 1. Theoretical Probabilities for A

[251,72, 72,125, 72]

= rxg+ Fxm, [N,dF,dg,dm,dr]

13
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z |log,(Prob(Max(A) = z))|log, (Prob(Max(A) > x))
61 —59.31708 —0.00000
63 —28.04184 —0.00000
65 —11.74975 —0.00000
67 —4.49427 —0.00969
69 —2.26278 —0.28959
71 —2.57445 —1.34536
73 —4.04775 —3.08091
75 —6.06569 —5.23025
7 —8.40989 —7.66634
79 —11.01854 —10.35123
81 —13.87850 —13.27806
83 —16.98915 —16.44828
85 —20.35274 —19.86525
87 —23.97235 —23.53290
89 —27.85161 —27.45551
91 —31.99462 —31.63775
93 —36.40602 —36.08474
95 —41.09104 —40.80210
97 —46.05555 —45.79606
99 —51.30614 —51.07350
101 —56.85022 —56.64210
103 —62.69611 —62.51040
105 —68.85321 —68.68798
107 —75.33208 —75.18559
109 —82.14473 —82.01538
111 —89.30479 —89.19113
113 —96.82788 —96.72856
115 —104.73193 —104.64570
117 —113.03773 —112.96344
119 —121.76953 —121.70612
121 —130.95595 —130.90241
123 —140.63108 —140.58647
125 —150.83614 —150.79957

Table 2. Theoretical Probabilities for A = r x g + F x m, [N,dF,dg,dm,dr] =

(251,72, 72,125, 72]




z |log,(Prob(Min(A) = z))|log,(Prob(Min(A4) < z))
20 —40.65323 —43.18977
22 —35.46258 —37.76018
24 —30.65940 —32.72656
26 —26.22237 —28.06513
28 —22.13352 —23.75581
30 —18.37752 —19.78140
32 —14.94125 —16.12695
34 —11.81359 —12.77941
36 —8.98669 —9.72763
38 —6.46351 —6.96454
40 —4.29038 —4.49790
42 —2.66199 —2.38748
44 —2.17074 —0.82352
46 —4.19768 —0.09439
48 —11.26592 —0.00059
50 —27.47108 —0.00000
52 —58.86814 —0.00000
54 —112.70222 —0.00000

Table 3. Theoretical Probabilities for A

[251, 72,72, 125, 72]

— Previous parameter sets for NTRUENCRYPT have used a product form for

=rxg+ F xm, [N,dF,dg,dm,dr]
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the quantities f and r, as described in [3,4]. Theoretical probability calcula-

tions for polynomials of this type are much harder to do than for the more
simply-structured binary polynomials investigated in this note. Advances in
this area might allow considerable efficiency gains for NTRUENCRYPT, and

thus would be of great practical interest.
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