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Abstract. This report describes enhanced encoding and verifica-
tion methods for the NTRU Signature Scheme (NSS).

Section 1. The Hard Problem Underlying NTRU and NSS

The NTRU Signature Scheme (NSS) is a digital signature scheme based on a hard
lattice problem. This lattice problem also underlies the NTRU Public Key Cryp-
tosystem described in [1]. In this section we remind the reader of the standard
description of the NTRU lattice problem in terms of products of polynomials in
convolution rings. For further details, see [1].

Fix three positive integer parameters N , p, and q with gcd(p, q) = 1. Let R be
the ring

R = Z[X]/(XN − 1).

Multiplication of two polynomials a(X) and b(X) in the ring R is equivalent to
taking the convolution product of the coefficient vectors of a and b. We will often
identify a polynomial in R with its N -dimensional vector of coefficients.

The private key for NTRU and NSS consists of two polynomials f(X) and g(X)
having small coefficients, possibly with some further structure. The public key is
the polynomial

h(X) ≡ f(X)−1 · g(X) (mod q),

where f(X)−1 denotes the inverse of f(X) modulo q, i.e., the inverse of f(X) in
the ring R/qR.

The set of all pairs of polynomials [a(X), b(X)] ∈ R×R satisfying

a(X) · h(X) ≡ b(X) (mod q)

forms a 2N -dimensional lattice LNT
h . The vector [f(X), g(X)] is a short vector

in LNT
h , but if N is large and the other parameters are chosen appropriately, then it

is a very difficult problem to either find [f(X), g(X)] or any other vector of similar
length in the lattice LNT

h . It is this hard problem that underlies both the NTRU
Public Key Cryptosystem and the NTRU Signature Scheme.
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Section 2. The NTRU Signature Scheme

The NTRU Signature Scheme (NSS) uses a public key h(X) as described in Sec-
tion 1. The secret that the signer, call him Bob, possesses is knowledge of two
small polynomials f(X) and g(X) (i.e., polynomials with small coefficients) that
factor h(X) as a product h(X) ≡ f(X)−1 · g(X) (mod q). Bob uses his secret to
produce a signature s for his digital document D. The verifier, call her Alice, checks
that s is tied to both the document D and the public key h(X).

The final requirement for NSS is that it must be difficult for a forger, call him
Fred, to produce a valid signature unless he knows a decomposition

h(X) ≡ F (X)−1 ·G(X) (mod q)

using small polynomials F (X) and G(X). In other words, it should be difficult for
Fred to find a valid signature unless he is able to solve the hard underlying lattice
problem.

The fundamental structure of NSS may be summarized as follows:

• Message Encoding
Bob chooses a small polynomial w(X) that encodes the digital document D.

• Signing
Bob publishes the signature s(X) ≡ f(X) · w(X) (mod q).

• Using the Public Key
Alice uses the public key to compute t(X) ≡ h(X) · s(X) (mod q). Notice
that t(X) is actually equal to g(X) · w(X) (mod q), so both s(X) and t(X)
are products of small polynomials. Of course, Alice does not know the value
of f(X) or g(X) or w(X).

• Verification
Alice performs one or more verification tests to verify that s(X) and t(X) are
tied to the digital document D and that they have the appropriate character-
istics to be products of two small polynomials.

We will take up the dual questions of message encoding and signature verification
in the next section.
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Section 3. Enhanced Encoding and Verification Methods for NSS

There are a many ways in which information about the digital document D can
be encoded in the polynomial w(X), and there are similarly many ways in which
one can verify that s(X) and t(X) are tied to D and look like products of small
polynomials. The article on NSS in the Eurocrypt proceedings [2] described one such
method. In this section we describe some enhanced encoding/verification techniques
that offer additional resistance to forgery and transcript analysis attacks.

The NTRU Public Key Cryptosystem uses a small modulus p that is relatively
prime to the larger modulus q as a method for separating the plaintext from ran-
dom masking material. The NTRU Signature Scheme may similarly use a small
modulus p in order to tie the digital document D to the signature. To accomplish
this goal, it is convenient to form the private key polynomials in the following way.

Select three small secret polynomials u(X), F (X), and G(X). The private key
consists of the polynomials

f(X) = u(X) + pF (X),

g(X) = u(X) + pG(X).

For signing purposes, it is also convenient to compute and store the polynomial

U(X) = u(X)−1 (mod p).

The digital document D is converted, using an appropriate method (e.g., a hash
function) for computing a message representative, into a small polynomial m(X). It
is encoded into the polynomial w(X) by choosing small masking polynomials w1(X)
and w2(X), letting

w0(X) = (U(X)m(X) mod p) + (U(X)w1(X) mod p),

and setting
w(X) = w0(X) + pw2(X).

(The polynomial w2 is partially random and partially chosen to equalize coefficient
frequency distributions, while w1 may be chosen to enhance certain masking prop-
erties. This will be described more fully below.) Bob’s signature is the polynomial

s(X) ≡ f(X) · w(X) (mod q).

Alice begins the verification process by using Bob’s public key h(X) to compute

t(X) ≡ h(X) · s(X) ≡ g(X) · w(X) (mod q).
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She now subjects s(X) and t(X) to a number of tests to determine if s(X) is a
valid signature. Among the many types of tests available to Alice, we mention the
following three:†

Signature Norm Binding Tests. The centered norm of a polynomial a(X) =
a0 + a1X + · · ·+ aN−1XN−1 is the quantity

‖a‖ =

√

√

√

√

∑

0≤i<N

a2
i −

1
N

(

∑

0≤i<N

ai

)2

.

(Equivalently, ‖a‖/
√

N is the standard deviation of the sequence [a0, a1, . . . , aN−1].)
The centered norm is roughly multiplicative, that is, for random polynomials a(X)
and b(X) it satisfies

‖a · b‖ ≈ ‖a‖ · ‖b‖.

In particular, since

s(X) ≡ f(X) · w(X) (mod q) and t(X) ≡ g(X) · w(X) (mod q)

are products of small polynomials, their norms will be small. Thus bounds on ‖s‖
and ‖t‖ provide a possible test for a valid signature.

However, it turns out that an even better test is obtained by considering the
norms of the polynomials

s′(X) ≡ p−1 ·
(

s(X)−m(X)
)

(mod q),

t′(X) ≡ p−1 ·
(

t(X)−m(X)
)

(mod q).

We illustrate why s′ has small norm, the argument for t′ being similar. If we
multiply out the expression for s(X), we find that

s(X) ≡ f(X) · w(X) (mod q)

≡ (u(X) + pF (X)) · (w0(X) + pw2(X)) (mod q)

≡ m(X) + w1(X) + p · (medium sized polynomial) (mod q).

In the last line we have used the fact that

u(X)w0(X) ≡ u(X) ·
(

U(X) ·m(X) + U(X) · w1(X)
)

≡ m(X) + w1(X) (mod p),

† Before performing mod p reduction of a mod q polynomial, the coefficients should be placed in
the correct interval of length q. For example, if the coefficients of f(X), g(X), m(X), w0(X), w1(X) and
w2(X) are chosen more-or-less symmetrically around 0, then the coefficients of s(X) and t(X) would be
chosen in the range from −q/2 to q/2.

May 30, 2001



NTRU Cryptosystems Technical Report #017 5

since by definition u(X)U(X) ≡ 1 (mod p). Hence

s′(X) ≡ p−1 · w1(X) + (medium sized polynomial) (mod q).

Thus aside from the term p−1w1(X), which does not make a large contribution
because w1(X) has very few nonzero coefficients, we see that s′(X) has small norm.

Thus one test that Alice will perform to verify Bob’s signature is to check that
the centered norms ‖s′‖ and ‖t′‖ are smaller than a specified bound. She may also
check that the centered norm of the 2N -dimensional vector (s′, t′) is smaller than
a specified bound.

Remark. The condition that ‖(s′, t′)‖ be smaller than a specified bound provides a
direct link between a valid signature and a hard lattice problem. We briefly sketch;
see [3] for details.

Recall that the standard NTRU lattice LNT
h attached to the polynomial h is

the 2N -dimensional lattice consisting of all vectors (u, v) ∈ Z2N satisfying

v ≡ h · u (mod q).

The private key pair (f, g) (and its rotations (Xi ·f, Xi ·g)) are probably the shortest
vectors in LNT

h . Now consider a message m that is to be signed, and let am denote
the polynomial

am(X) ≡ p−1 ·
(

m(X)− h(X) ·m(X)
)

(mod q).

One can show that if s(X) is a valid signature on m(X) and s′(X) and t′(X) are
defined as above, then the vector (s′, t′ + am) is in the lattice LNT

h and its distance
to the known point (0, am) is ‖(s′, t′)‖.

Thus a valid signature on m gives a vector in LNT
h that is close to a target

vector (0, am) that depends on m. A more detailed analysis using the Gaussian
heuristic shows that the distance from (s′, t′+ am) to (0, am) is a constant multiple
of the probable distance from the closest vector in LNT

h to (0, am). In other words,
creating a valid signature is (heuristically) at least as hard as solving a closest vector
problem in LNT

h up to a constant factor. This is significant, since it is known that
solving SVP or CVP up to a constant factor in a general lattice is a very hard
problem.

Signature Congruence Binding Tests. Alice compares

s(X) mod p to m(X) mod p,(i)

t(X) mod p to m(X) mod p.(ii)

For appropriately chosen parameters, there will be good agreement in both case (i)
and case (ii). We illustrate why this is true for s(X), the argument for t(X) being
similar.

May 30, 2001



NTRU Cryptosystems Technical Report #017 6

We saw earlier that

s(X) ≡ m(X) + w1(X) + p · (medium sized polynomial) (mod q).

Even when multiplied by p, the “medium sized polynomial” will not have too many
coefficients outside the chosen interval mod q, so when s(X) is reduced modulo p,
most of its coefficients will satisfy

si ≡ mi + w1,i (mod p).

Thus s(X) mod p looks like m(X) up to the errors introduced by w1(X) and by
nontrivial reduction modulo q in the product f(X)w(X). Notice that NSS is using
the fact that f(X) and w(X) are small, which ensures that f(X)w(X) does not
have a large amount of reduction modulo q.

Thus Alice can check that the differences s(X) − m(X) mod p and t(X) −
m(X) mod p do not have too many nonzero entries, which is the test suggested in [2].
We will call these nonzero entries deviations. It turns out that the deviations in a
true signature (i.e., one created using the private key) satisfy much more stringent
criteria than simply being scarce, and these criteria can be used to craft a much
stronger test of validity.

The deviations in s and t come from two sources:

(1) Nontrivial mod q reduction in f(X) · w(X) and g(X) · w(X).
(2) Nonzero entries in w1(X).

The Type 1 deviations will tend to cluster in a particular mod p congruence
class depending on whether the corresponding coefficient of s(X) is nearer the top
or the bottom of the specified mod q interval. More precisely, it will tend to equal
q mod p (respectively −q mod p) if the coefficient of s(X) is near to the top (re-
spectively bottom) of the mod q interval. A similar remark applies to t(X). Thus
Alice may check that almost all of the (Type 1) deviations in s(X) and t(X) lie in
the appropriate mod p congruence class.

As for the Type 2 deviations, they are quite scarce. Further, Bob has a great
deal of freedom in choosing the polynomial w1(X), and if he chooses it to hide some
of the common mod q reduction, then w1 will tend to cause deviations to disappear
entirely, so actually will not add very much to the total.

For concreteness, we will describe a precise Signature Congruence Binding Test,
but we emphasize that there are a number of similar tests that one might perform.
We let I1, . . . , I4 denote the four quartiles modulo q,

I1 = (−q/2,−q/4], I2 = (−q/4, 0], I3 = (0, q/4], I4 = (q/4, q/2].

Now consider the following two quantities, which measure the deviations that occur
outside of where we expect them to cluster. In each set, we are counting the number
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of indices 0 ≤ j < N for which the indicated coefficients of s, t, and m have the
indicated properties.

Dev1 = #
{

j : sj ∈ I4 and sj −mj 6≡ 0, q (mod p)
}

+ #
{

j : sj ∈ I1 and sj −mj 6≡ 0,−q (mod p)
}

+ #
{

j : tj ∈ I4 and tj −mj 6≡ 0, q (mod p)
}

+ #
{

j : tj ∈ I1 and sj −mj 6≡ 0,−q (mod p)
}

Dev2 = #
{

j : sj ∈ I3 and sj −mj 6≡ 0, q (mod p)
}

+ #
{

j : sj ∈ I2 and sj −mj 6≡ 0,−q (mod p)
}

+ #
{

j : tj ∈ I3 and tj −mj 6≡ 0, q (mod p)
}

+ #
{

j : tj ∈ I2 and sj −mj 6≡ 0,−q (mod p)
}

Alice verifies that Dev1 and Dev2 are smaller than some specified quantities.

Remark. Although lattice methods are not the focus of this note, we mention that
it is important for f(X)w(X) and g(X)w(X) to have enough nontrivial reduction
modulo q so as to prevent Fred from recovering their values exactly in R, since oth-
erwise he can work with an N -dimensional lattice and use it to try to recover f(X)
and g(X). The purpose of w1 is to hide enough of the nontrivial reduction to make
it infeasible to lift s(X) to f(X)w(X), or to lift t(X) to g(X)w(X). For a similar
reason, it is important the the polynomial (F (X)−G(X))w(X) have enough non-
trivial reduction modulo q to prevent Fred from recovering its exact value from its
value modulo q, since he can certainly find its value modulo q from the congruence

(F (X)−G(X))w(X) ≡ p−1(s(X)− t(X)) (mod q).

It is thus advisable that when Bob creates a signature, he check that there is suffi-
cient mod q reduction and start with a new w2 if there is not.

Signature Coefficient Magnitude Tests. The signature norm binding test de-
scribed earlier checks that the polynomials

s′ ≡ p−1(s−m) (mod q) and t′ = p−1(t−m) (mod q)

have small (centered) norm. The fact that these polyomials are actually sums of
products of small polynomials (if s has been formed using the private key) implies
further that the actual coefficients of s′ and t′ tend to be fairly small. On the
other hand, they will not have a huge number of small coefficients and a few large
coefficients, with nothing in between. Thus Alice can perform a further validity
check by verifying that s′ and t′ have a suitable number of coefficients in certain
ranges.
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To formulate a precise test, let J1, J2, J3, J4 be the quartiles

J1 = [0, q/8), J2 = [q/8, q/4), J3 = [q/4, 3q/8), J4 = [3q/8, q/2],

and count the number of coefficients of s′ and t′ whose absolute value lies in each
interval.

Coefs,1 = #{j : |s′j | ∈ J1}
Coefs,2 = #{j : |s′j | ∈ J2}
Coefs,3 = #{j : |s′j | ∈ J3}
Coefs,4 = #{j : |s′j | ∈ J4}

Coeft,1 = #{j : |t′j | ∈ J1}
Coeft,2 = #{j : |t′j | ∈ J2}
Coeft,3 = #{j : |t′j | ∈ J3}
Coeft,4 = #{j : |t′j | ∈ J4}

Then Alice may check upper and lower bounds on Coefs,i and Coeft,i for each
1 ≤ i ≤ 4.

Section 4. Frequency Analysis of Signature Transcripts

The NSS message encoding method described in [2] used u(X) = 1 and concealed
the message m(X) in the masking polynomial w(X) by choosing w2(X) to equalize
the (first) moment of m(X) + pw2(X). Szydlo [5] has described a very interesting
method for analyzing the frequency distribution of sk or tk (i.e., the kth coefficient
of s and t, respectively) for a fixed k on a subtranscript of signatures in order to
extract information about fk or gk. The subtranscripts are selected based on using
message polynomials m(X) that have a particular coefficient taking on a specific
value. On sufficiently long transcripts (a few tens of thousands), Szydlo’s method
is effective on signatures generated using u(X) = 1 and first moment equalization.
We now describe Szydlo’s method in more detail and explain why the enhanced
message encoding methods detailed in this document prevent it from gaining useful
information on even very long transcripts.

Before beginning, we note that if s is a valid signature on m, then Xi · s is a
valid signature on Xi ·m. For this reason, we will restrict attention to the constant
coefficient m0 of m, since each coefficient of m will become the constant coefficient
of one of the rotations Xi ·m.

Now consider a transcript S consisting of some large number of valid signature-
message pairs (s,m), where we also include all the rotations (Xi · s,Xi ·m) in S.
For each value of 0 ≤ k < N and each value of ε ∈ {−1, 0, 1}, we consider the sub-
transcript consisting of messages with m0 = ε and assemble a probability function
that gives the probability that the kth coefficient of s takes on each particular mod q
value,

Pk,ε(b) = Prob(sk = b |m0 = ε) =
#{(s,m) ∈ S | sk = b and m0 = ε}

#{(s,m) ∈ S |m0 = ε}
.
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In order to see why these probability distributions might be useful, we need to write
out the expression for sk. If u(X) = 1, then

sk = fk(m0 + w1,0 + pw2,0) +
N−1
∑

i=1

fk−i(mi + w1,i + pw2,i).

If we restrict attention to signatures on messages with m0 taking a fixed value,
then the distribution of values of sk will look somewhat different depending on the
value of fk. In other words, by comparing and constrasting the probability distri-
butions Pk,ε(b) for different pairs (k, ε), one may gain some information about fk.

The message encoding method described in [2] includes choosing w2,0 in such a
way that for every index i, the mean of mi + pw2,i over a large transcript will be 0.
This first moment equalization is accomplished by the simple rule:

Subtract mi from w2,i with probability 1/p.

First moment equalization already makes the probability distributions Pk,ε look
more alike. It is not difficult to extend this idea by equalizing higher moments,
thereby making the different Pk,ε’s even more difficult to distinguish. For example,
if p = 3, then the following rule makes both the first and second moments of
mi + pw2,i the same, regardless of the value of mi:

If mi = ±1, then subtract mi from w2,i with probability 1/3.

If mi = 0, then







add 1 to w2,i with probability 1/9,
subtract 1 to w2,i with probability 1/9,
leave w2,i unchanged with probability 7/9.

Similar, but slightly more complicated, rules can be used to equalize moments of
even higher order; and when higher moments are equalized, it requires even longer
transcripts to extract useful information.

Another effective method to inhibit the leakage of information from long tran-
scripts is provided by the encoding method described above in which the private
key includes a nontrivial (secret) polynomial u(X). The effect of u(X) is to replace
the known message polynomial m(X) in the masking polynomial w(X) with the
quantity U(X) · m(X) mod p, where U(X) ≡ u(X)−1 mod p. The coefficients of
U(X) are unknown to an observer, and the coefficients of U(X) ·m(X) mod p take
their values in the set {1, 0,−1}.

This greatly limits the amount of information available from even a long tran-
script of signatures. Subtranscripts selected on the basis of coefficients of m(X) will
display only tiny frequency differences, which will be drowned out by random noise
until the number of signatures collected is immense. Further, moment equalization
can also be applied in this situation (i.e., when u(X) 6= 1) to further mask frequency
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differences. In the following we will expand upon this and quantify the increase in
the length of transcript required to extract even partial information.

The analysis of frequency distributions when u(X) is nontrivial proceeds as
follows. In this situation, the kth coefficient of s has the form

sk =
N−1
∑

i=0

fk−i(w0,i + pw2,i),

where
w0,i = (U ·m mod p)i + (U · w1 mod p)i

=





(N−1
∑

j=0

Ui−jmj

)

mod p



 +





(N−1
∑

j=0

Ui−jw1,j

)

mod p



 .

Suppose now that we restrict attention to subtranscripts whose messages differ in
(say) their constant terms m0. Then the quantity

(N−1
∑

j=0

Ui−jmj

)

mod p =
(

Uim0 +
∑

j 6=0

Ui−jmj

)

mod p (∗)

will exhibit a slightly different distribution of values depending on the value of Ui,
while the other terms in s, those involving w1 and w2, appear as random noise and
will eventually average out to zero.

For concreteness, take p = 3 and consider the three sets of indices

Iε = {i : Ui = ε}, ε ∈ {−1, 0, 1}.

Then the quantity (∗) will have a certain frequency distribution depending on
which Iε contains i. This means that we can view sk as having the form

sk =
∑

i∈I−1

fk−iA +
∑

i∈I0

fk−iB +
∑

i∈I1

fk−iC, (∗∗)

where A, B, and C are random variables with slightly different distribution func-
tions. If it is possible to detect the differences in the distributions A, B, and C,
then it might be possible to recover the individual sums

∑

i∈Iε
fk−i.

Note that the quantity (∗) that leads to the differences in A, B, and C only takes
on three values, so the differences between the the distribution functions of A, B
and C will be very small. Thus it will require an enormous number of signatures
to distinguish the differences. We can quantify this by the following experiment.

Let U be a (random) polynomial with coefficients taken from the set {−1, 0, 1}
and let Iε be the sets defined above. Generate a large number of polynomials m
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with coefficients taken in {−1, 0, 1}, but with m0 fixed to be equal to 1. For each m,
compute the quantity (∗),

(U ·m)i mod 3 =
(N−1

∑

j=0

Ui−jmj

)

mod 3,

and use the data to determine experimental probabilities

Prob(ε, b) = Prob
(

(U ·m)k ≡ b (mod 3) | k ∈ Iε
)

.

We performed this experiment with a fixed U and a set of 100,000,000 randomly
chosen polynomials m. The results are given in the following table.

ε \ b −1 0 1

−1 0.33332732 0.33333292 0.33333975

0 0.33332719 0.33333274 0.33334007

1 0.33332735 0.33333231 0.33334033

Prob(ε, b) = Prob((U ·m)k ≡ b : k ∈ Iε)

It is clear that the differences in the three distributions are virtually non-existent
after 100 million messages. More precisely, if the distributions were actually iden-
tical, then one would expect to find random fluctuations on the order of 1/

√
K in

different samples of size K. So the fact that the probabilities in the table show
variations smaller than 1/104 indicates that a sample of size 108 is insufficient to
distinguish the different distributions.

In the interests of completeness, we also consider the security implications if
one were able to distinguish the three distributions A, B, and C sufficiently to
untangle the three sums in (∗∗). More precisely, suppose that an attacker could
recover, either partially or entirely, the 3N sums

∑

i∈Iε

fk−i, ε ∈ {−1, 0, 1}, 0 ≤ k < N. (∗∗∗)

This information can be summarized by writing U as a difference of binary polyno-
mials,

U = U1 − U2,

and noting that

f · U1 =
N−1
∑

k=0

(N−1
∑

i=0

fk−iU1,i

)

Xk =
N−1
∑

k=0

(

∑

i∈I1

fk−i

)

Xk

f · U2 =
N−1
∑

k=0

(N−1
∑

i=0

fk−iU1,i

)

Xk =
N−1
∑

k=0

(

∑

i∈I−1

fk−i

)

Xk.
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Thus knowledge of all of the sums (∗∗∗) is equivalent to knowing the products f ·U1

and f · U2. And similarly, by working with t ≡ h · s (mod q) one might be able to
approximate or compute the values of g · U1 and g · U2.

There are several issues that must now be addressed.

[1] How long a transcript is needed in order to reliably find the values of

f · U1, f · U2, g · U1, g · U2?

More precisely, how long a transcript is needed in order to determine (say)
two of them closely enough that the remaining coefficients can be found by an
exhaustive search?

[2] Can the quantities f · U1, f · U2, g · U1, and g · U2 be used to directly forge a
signature?

[3] Can the quantities f ·U1, f ·U2, g ·U1, and g ·U2 be used to recover the values
of f , g, U1 and/or U2.

We consider each of these questions in turn.

[1] Length of Transcript
An attacker would need enough signatures to decompose the distribution of sk

in (∗∗) into a linear combination of A, B, and C with coefficients in the range
(−q/2, q/2]. This is considerably more difficult than simply distiguishing be-
tween A, B, and C, and even for this latter task we have had no success using
transcripts consisting of 100 million signatures.

[2] Direct Forgery
The only natural way to directly forge a signature using f ·U1 and f ·U2 appears
to be to set

s ≡ (f · U1 − f · U2) ·m (mod q)

≡ f · (U1 − U2) ·m (mod q)

≡ f · U ·m (mod q).

Then
t ≡ h · s ≡ (f−1 · g) · s ≡ g · U ·m (mod q),

so s and t appear to have the correct form to be valid signatures. However, it
is easy to check experimentally that since s and t constructed in this way are
products of three trinary polynomials, the norms of s′ and t′ and the deviations
of s and t will be far too large to pass the verification tests using the suggested
parameters. The crucial point is that someone who knows the private key f
can construct a signature

s ≡ f ·
(

(U ·m mod p) + (a small polynomial)
)

(mod q)

consisting of f multiplied by a single small polynomial; but an erstwhile forger
who knows f ·U can only construct f ·U ·m, which is a product of three small
polynomials.
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[3] Lattice Attacks
If f ·U1, f ·U2, g ·U1, and g ·U2 could be recovered modulo q, then there is a
reasonable chance that there would be little enough wrapping that they could
be lifted to Z. There are a then a number of different lattice attacks available:
(a) Choose a (large) integer M and look at the NTRU lattice corresponding

to either

(fU1) · (gU1)−1 (mod M) or (fU2) · (fU1)−1 (mod M).

These are 2N -dimensional lattices that contain the short vectors (f, g) and
(U1, U2) respectively.

(b) Another possibility is to look at the N -dimensional lattice generated by
the 2N vectors

fU1, XfU1, X2fU1, . . . , XN−1fU1,
fU2, XfU2, X2fU2, . . . , XN−1fU2.

There is a good chance that the shortest vector in this lattice will be f ,
and if not, the shortest vector will be some small multiple of f .

However, there are three important points to note when considering the pos-
sibility of lattice attacks. First, they can only succeed if two products such
as f · U1 and f · U2 are guessed exactly ; if even a single coefficient is incor-
rect, then the lattice provides no useful information. Second, even these easier
lattice problems are nontrivial. Third, and most importantly, there does not
appear to be any practical way of even beginning an improved lattice search
using a transcript of fewer than 100 million signatures.

In summary, with the enhanced encoding methods described in this note, there
appears to be no practical way to recover any useful information about the distri-
bution of the coefficients of the private key.
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Section 5. Sample Parameter Choices
In this section we give specific parameter choices for NSS that appear to yield
a security level comparable to that of 1024 bit RSA. We begin with the basic
parameters

N = 251, p = 3, q = 128.

For notational convenience, we define a trinary polynomial to be a polynomial whose
coefficients are all −1, 0, and 1, and we let

TN (d1, d2) = {trinary polynomials with d1 −1’s and d2 1’s}

The private keys have the form

f = u + pF and g = u + pG with u ∈ T251(83, 82), F, G ∈ T251(65, 65).

We also (as above) let U ≡ u−1 (mod p).
The message digest m, which is formed as a hash of the digital document D

being signed, is a trinary polynomial. In other words, we use an agreed upon hash
function

Hash : {documents} −→ {trinary polynomials},
and we set m = Hash(D).

Remark. In practice, one might take u, F , G and/or m to be products, as described
in [4]. For the parameters (N, p, q) = (251, 3, 128) as above, we take

u = u1 · u2, F = F1 · F2, G = G1 ·G2, m = m1 ·m2 ·m3

with

u1 ∈ T251(7, 6), u2 ∈ T251(7, 8),

F1, G1 ∈ T251(6, 6), F2, G2 ∈ T251(6, 6),

m1,m2 ∈ T251(4, 4), m3 ∈ T251(5, 5).

The masking polynomial is formed using

w1 ∈ T (d1, d2) and w2 ∈ T (58, 58).

The values of d1 and d2 will vary, since w1 is chosen to hide common deviations
in s and t, but for the indicated parameters one will tend to have 12 ≤ d1 + d2 ≤
20. Also, one may choose some of the coefficients of w2 to moment balance the
coefficients of U · m mod 3. (There are no practical attacks known even without
moment balancing.)

The signature s on the digital document D is then computed as

w0(X) =
(

U(X)m(X) mod p
)

+
(

U(X)w1(X) mod p
)

,

w = w0 + pw2,
s ≡ f · w (mod q).
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In order to verify that s is a valid signature on D for the public key h, Alice
performs various tests. We will give explicit versions of three such tests from among
the many that are possible. Alice first regenerates the message digest m = Hash(D)
and then computes the following polynomials:

t ≡ h · s (mod q)

s′ = p−1(s−m) (mod q)

t′ = p−1(t−m) (mod q)

She next computes the centered norms ‖s′‖, ‖t′‖, ‖(s′, t′)‖, the deviation numbers
Dev1 and Dev2, and the coefficient numbers Coefs,i and Coeft,i as described earlier.
Finally she checks the following conditions and she rejects the signature as invalid
if it fails any of them.

(A) Dev1 ≤ 10 and Dev2 ≤ 18
(B) ‖(s′, t′)‖ ≤ 485
(C) ‖s′‖ ≤ 360 and ‖t′‖ ≤ 360
(D) 95 ≤ Coefs,1, Coeft,1 ≤ 153

50 ≤ Coefs,2, Coeft,2 ≤ 100
7 ≤ Coefs,3, Coeft,3 ≤ 42

Coefs,4, Coeft,4 ≤ 14

Remark. Based on the Gaussian heuristic, the norm bound ‖(s′, t′)‖ ≤ 485 given
in (B) corresponds to (s′, t′) solving a closest vector problem in LNT

h up to a factor
of 7.91. See [3] for details.

Remark. The signature verification method described in [2] lacked the norm test
that had appeared in the original version. This led Jonsson [6], Stern [7] (and
others) to observe that if half of the coefficients of s and t are preselected and the
other half are determined from the required congruence t ≡ h · s (mod q), then the
resulting s and t have a significant chance of passing a crude congruence test based
only on counting the total number of deviations. One can estimate the probability
that an s and t constructed in this way will pass the tests described in this section.
Of course, tests (B), (C) and (D) are not fully independent, but tests (A) and (B)
are essentially independent. One finds that the probability that s passes even these
two tests is approximately 2−80. See [3] for further details.
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Section 6. Conclusions
In this note we have presented an enhanced signature encoding method for NSS
and described various verification methods. These methods are meant to indicate
by example some of the many ways in which a document can be encoded into a
signature s(X) and ways in which s(X) ≡ f(X) ·w(X) (mod q) and its correspond-
ing t(X) ≡ h(X) · w(X) (mod q) can be distinguished from a forgery due to the
structure of s and t as products of two small polynomials.

We conclude by reiterating that the idea underlying NSS is Bob’s knowledge
of the secret decomposition h(X) = f(X)−1 · g(X) (mod q). Bob demonstrates his
knowledge by publishing a product of small polynomials

s(X) ≡ f(X) · w(X) (mod q).

This allows Alice to compute the quantity

t(X) ≡ h(X) · s(X) ≡ g(X) · w(X) (mod q),

which is also a product of two small polynomials. Thus Bob’s secret knowledge
allows him to give to Alice two small products that are related by h(X), but without
having to tell Alice his secret decomposition of h(X). We have also seen that a norm
verification test proves to Alice that Bob is heuristically able to solve a certain closest
vector problem, up to a constant factor, in a lattice associated to his public key. We
have also seen that with proper choices of encoding schemes even an extremely long
transcript of signatures reveals no useful information. These are the fundamental
ideas of NSS, and the remaining details involve choosing one of the many ways of
encoding the digital document into w(X) and verifying that the signature has the
right form (i.e., is bound to the digital document and consists of products of small
polynomials).
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