
NTRU Cryptosystems Technical Report

Report # 016, Version 1
Title: Protecting NTRU Against Chosen Ciphertext and Reaction Attacks
Author: Jeffrey Hoffstein and Joseph H. Silverman
Release Date: June 9, 2000

Abstract. This report describes how the Fujisaki-Okamoto Self-
Referential Technique (FOSRT) can be used to make the NTRU
Public Key Cryptosystem resistant to adaptive chosen ciphertext
attacks and to reaction attacks.

Many asymmetric ciphers are susceptible to (adaptive) chosen ciphertext at-
tacks. An attacker sends a series of purported ciphertexts e1, e2, . . . and uses the
decryptions to deduce information about either the secret key or about an inter-
cepted ciphertext e that was used to create e1, e2, . . .. The user Alice may try to
guard against such attacks by padding her plaintext so that Bob can detect valid
plaintexts from invalid plaintexts, but then the attacker may be able to gain useful
information by simply observing which ciphertexts are accepted and which cipher-
texts are rejected. An example of such an attack against RSA and a suggested
defense can be found in [2] and [3]. Adaptive chosen ciphertext attacks against
NTRU have also been formulated and various countermeasures described, see [9]
and [10].

Another type of attack called a reaction attack [6] can be used against some
cryptosystems, including NTRU [8]. In a reaction attack, one can takes a cipher-
text e and creates ciphertexts e1, e2, . . . such that for each ciphertext ei, there is
a significant positive probability it will decrypt to the same plaintext as e and a
significant positive probability it will decrypt to a different plaintext than e. Some
specific reaction attacks against NTRU, again with assorted countermeasures, are
given in [8] and [9].

In this report we describe two methods of Fujisaki and Okamoto [5] that can be
used to defend NTRU against both adaptive chosen ciphertext attacks and reaction
attacks. The basic idea is to use a hash of the plaintext (suitably padded) as the
random component required in the encryption process. The decrypted plaintext is
then checked by redoing the encryption. Since the plaintext reinserts itself into the
encryption process, we have dubbed this the

Fujisaki-Okamoto Self-Referential Technique (FOSRT).

Although FOSRT, as applied to NTRU, has a small drawback in that it requires
computation of one extra convolution product, NTRU remains extremely fast even
with this extra computation. We also note that an alternative defense against
chosen ciphertext and reaction attacks takes advantage of NTRU’s fast key creation
to create transient (e.g., one-per-session) keys.

1



NTRU Cryptosystems Technical Report #016 2

Section 1. NTRU and FOSRT

We assume that the reader is familiar with NTRU encryption and decryption, as
described for example in [7]. The public key is a polynomial h(X) with coefficients
modulo q and the plaintext is a polynomial m(X) with coefficients modulo p. In
order to encrypt raw plaintext with no padding, Alice chooses a random polyno-
mial r(X) with coefficients modulo p (generally with a further constraint on the
coefficients) and computes the ciphertext e(X) as the polynomial

e(X) ≡ r(X) ∗ h(X) + m(X) (mod q).

(All polynomial multiplications are done using the rule XN = 1, so are really
convolution products on the vectors of coefficients.)

In order to encrypt a plaintext message M using the Fujisaki-Okamoto Self-
Referential Technique (FOSRT), Alice first chooses a random string R of (say)
40 to 80 bits. She uses M and R to form the plaintext polynomial m(X) in some
standard way so as to introduce sufficient randomness into the message (see Re-
mark 1 below). She also applies a pre-selected hash function H that converts a bit
string M‖R into an unpredictable valid polynomial r(X). Alice then computes the
NTRU ciphertext as usual,

e(X) ≡ r(X) ∗ h(X) + m(X) (mod q),

and sends it to Bob.
Bob begins the decryption process as usual, recovering (after some computa-

tion) the plaintext polynomial m(X). He converts m(X) back into the bit string
M‖R and pulls off the ostensible message M . He next computes

H(M‖R) ∗ h(X) + m(X) (mod q).

If this is equal to the ciphertext e(X) that he received from Alice, he accepts the
message. Otherwise, he rejects the message as indecipherable.

Notice that a valid NTRU ciphertext using FOSRT necessarily has the form

(Valid r) ∗ h + (Valid m) (mod q),

so it is not possible to create valid FOSRT-NTRU ciphertexts that have a signif-
icant positive probability of deciphering to two different plaintexts.† This means

†
In this context we should mention that for NTRU, there is a very small probability that a ciphertext

formed with a valid r and a valid m will decipher to something other than m. However, for suggested
NTRU parameters, the probability of these wrap/gap failures is extremely small, so it would require
millions (or billions) of messages to generate a few examples. See [7] and [1] for details.

June 9, 2000



NTRU Cryptosystems Technical Report #016 3

that NTRU with FOSRT should be secure against reaction attacks such as those
described in [6] and [8].

Similarly, adaptive chosen ciphertext attacks cannot be used against NTRU
with FOSRT, since the only ciphertexts that are valid are those for which the
random component (i.e., the r(X) polynomial) matches in an unpredictable way the
plaintext component (i.e., the m(X) polynomial). This intuition is made precise in
the the paper of Fujisaki and Okamoto [5], where they develop FOSRT for a general
probabilistic asymmetric cipher. See Remark 2 for further discussion.
Remark 1. Combining the Plaintext M and Random String R
There are many ways to combine the plaintext M and random string R into a valid
NTRU message polynomial m(X). The simplest method, which probably suffices
for most purposes, is to convert the concatenated bit string M‖R directly into a list
of mod p coefficients. For added security with very low overhead, one can use R to
modify M in an unpredictable, but reproducible, way. For example, let

M ′ = Hash(R) XOR M,

and then translate the bit string M ′‖R directly into the coefficients of m(X).
Remark 2. NTRU and IND-CPA
In technical terms, the Fujisaki-Okamoto construction FOSRT in [5] takes a pub-
lic key cryptosystem Π that is Indistinguishable against Chosen Plaintext Attacks
(IND-CPA) and uses it to create a new public key cryptosystem Π′ that is Indis-
tinguishable against (Adaptive) Chosen Ciphertext Attacks (IND-CCA). By work
of Bellare, Desai, and Pointcheval [1], this also implies that the new system Π′ is
Non-Malleable against (Adaptive) Chosen Ciphertext Attacks (NM-CCA). In or-
der to use FOSRT with NTRU, we need to discuss the extent to which NTRU is
IND-CPA.

If NTRU is used with raw unpadded message polynomials m(X), then it is
not IND-CPA. Thus if m1 and m2 are known plaintexts and if e is the ciphertext
for one of them, then an adversary can determine which is the correct plaintext by
computing

h−1 ∗ (e − m1) (mod q) and h−1 ∗ (e − m2) (mod q)

and checking which one is a valid r(X) polynomial.† However, as soon as a rea-
sonable amount of random padding is added to the plaintext, NTRU appears to be
indistinguishable against chosen plaintext attacks, allowing the use of FOSRT. For
example, one can concatenate the random component R with a suitably modified
version of M as described in Remark 1 . (We note that even if m(X) is formed by

†
In practice, an NTRU public key polynomial h(X) does not have an inverse; but one can find a

pseudo-inverse which will almost fulfill the same purpose.

June 9, 2000



NTRU Cryptosystems Technical Report #016 4

simply concatenating the plaintext M with the random string R, an adversary will
still need to distinguish betweeen r + h−1 ∗ u1 and r + h−1 ∗ u2, where one of u1

and u2 has a smaller number of nonzero coefficients than the other. This appears
to be a difficult problem.)
Remark 3. Using Transient Keys to Avoid Loss of Efficiency
As mentioned above, a possible drawback to using FOSRT with NTRU is that the
decryption process requires one additional polynomial multiplication (convolution
product), as well as a few other less time-consuming operations. The effect of this is
to reduce decryption speed about 40%. However, we note that the speed reduction
can be avoided while still protecting against chosen ciphertext and reaction attacks
if one takes advantage of NTRU’s superfast key generation and uses transient (e.g.,
one-per-session) keys, since then no single key is used for long enough to accumulate
the data needed for such an attack.

Section 2. The Fujisaki-Okamoto Hybrid Method
In technical language, the Fujisaki-Okamoto Self-Referential Technique described
in the previous section creates a public key cryptosystem that is indidistinguishable
against adaptive chosen ciphertext attacks (IND-CCA) in the random oracle mode,
assuming only that the original system is indistinguishable against chosen plaintext
attacks (IND-CPA) and contains sufficient variability (sufficiently γ-uniform, in the
terminology of [4] and [5]).

Fujisaki and Okamoto have described another construction [4] in which the
public key cryptosystem is only assumed to satisfy a One-Way Encryption (OWE)
assumption, which is weaker than IND-CPA. Intuitively, their construction in [4]
assumes only that an adversary is not able to find an algorithm that has a non-
negligible chance of decrypting messages. Their construction is an example of a hy-
brid cryptosystem, because it combines a public key cryptosystem, such as NTRU,
with a private key cryptosystem, such as 3DES or AES. NTRU fits very easily into
the Fujisaki-Okamoto hybrid construction. In this section we give a brief descrip-
tion.

As above, Alice starts with her plaintext M . She randomly chooses a valid
m(X) polynomial (which is completely independent of her plaintext) and computes
an r(X) polynomial as a hash H(m, M) of m and M . She then uses NTRU to form
the ciphertext

e(X) ≡ r(X) ∗ h(X) + m(X) (mod q).

Next she uses another hash function to compute G(m), where G(m) is a key for
a symmetric cipher such as 3DES or AES. She uses this key and the symmetric
cipher to encrypt the plaintext M and create the (symmetric) ciphertext E. To
recapitulate in formulas,

e = NTRUh(H(m, M), m) ≡ H(m, M) ∗ h + m (mod q),
E = SymCiphG(m)(M).

June 9, 2000



NTRU Cryptosystems Technical Report #016 5

Alice sends this pair (e, E) to Bob.
Bob’s decryption process proceeds as follows:

• Bob uses NTRU decryption (and his private key) to recover m̂ from e.
• Bob computes the hash G(m̂), which is a key for the symmetric cipher.
• Bob uses symmetric cipher decryption with the key G(m̂) to decrypt the ci-

phertext E and recover the plaintext M̂ .
• Bob computes the hash H(m̂, M̂), which is an r(X) polynomial for NTRU.
• Bob checks that the ciphertext e is equal to the quantity H(m̂, M̂) ∗ h + m̂

(mod q), in which case he accepts the plaintext M̂ . Otherwise he rejects the
message as indecipherable.

June 9, 2000



NTRU Cryptosystems Technical Report #016 6

References
[1] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway, Relations Among Notions

of Security for Public-Key Encryption Schemes, Advances in Cryptology—
CRYPTO ’98, Springer-Verlag, 1992.

[2] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS#1, Advances in Cryptology—Crypto ’98,
Springer-Verlag, 1992.

[3] D. Bleichenbacher, B. Kaliski, J. Staddon, Recent results on PKCS#1: RSA
encryption standard, RSA Laboratories’ Bulletin, Number 7, June 26, 1998.

[4] E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric
encryption schemes, Advances in Cryptology—CRYPTO ’99, Lecture Notes
in Computer Science 1666, Springer-Verlag, 1999, 537–554

[5] E. Fujisaki, T. Okamoto, How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol.E83-A, No.1, Special Issue on
Cryptography and Information Security (January 2000)

[6] C. Hall, I. Goldberg, B. Schneier, Reaction attacks against several public-key
cryptosystems, preprint April 1999, available at www.counterpane.com

[7] J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key
cryptosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June
1998, Lecture Notes in Computer Science 1423, J.P. Buhler (ed.), Springer-
Verlag, Berlin, 1998, 267–288

[8] J. Hoffstein, J.H. Silverman, Reaction Attacks Against the NTRU Public
Key Cryptosystem, NTRU Technical Report #015, August 1999, available
at www.ntru.com

[9] E. Jaulmes, A. Joux, A chosen-ciphertext attack against NTRU, in Proceed-
ings of CRYPTO 2000, Lecture Notes in Computer Science, Springer-Verlag,
to appear.

[10] J.H. Silverman, Plaintext Awareness and the NTRU PKCS, NTRU Technical
Report #007, July 1998, available at www.ntru.com

[11] J.H. Silverman, Wraps, Gaps, and Lattice Constants, NTRU Technical Re-
port #011, January 1999, available at www.ntru.com

Comments and questions concerning this technical report should be addressed to
techsupport@ntru.com

Additional information concerning NTRU Cryptosystems and the NTRU Public
Key Cryptosystem are available at

www.ntru.com

NTRU is a trademark of NTRU Cryptosystems, Inc.

The NTRU Public Key Cryptosystem is patent pending.

The contents of this technical report are copyright June 9, 2000 by NTRU Cryptosystems, Inc.

June 9, 2000


