
NTRU Cryptosystems Technical Report

Report # 015, Version 2
Title: Reaction Attacks Against the NTRU Public Key Cryptosystem
Author: Jeffrey Hoffstein and Joseph H. Silverman
Release Date: v1. August 1999; v2. June 2000

Abstract. Hall, Goldberg, and Schneier have proposed a Reaction
Attack against several public key cryptosystems based on lattice
problems, including the McEliece, Atjai-Dwork, and Goldreich-
Goldwasser-Halevi cryptosystems. In this note we describe a Re-
action Attack on the NTRU public key cryptosystem and describe
a number of ways in which such attacks may be easily detected
and thwarted.

Note for Technical Report #015 Version 2. The countermeasures described
in this report are largely superceded by NTRU Technical Report #016, “Protect-
ing NTRU Against Chosen Ciphertext and Reaction Attacks.” The report #016
describes a padding technique of Fujisaki and Okamoto that protects against re-
action attacks and also against the adaptive chosen ciphertext attacks described
in NTRU Technical Report #007 and in the paper “A chosen-ciphertext attack
against NTRU,” E. Jaulmes and A. Joux, Proceedings of CRYPTO 2000, Lecture
Notes in Computer Science, Springer-Verlag.

In a recent preprint, Hall, Goldberg, and Schneier [1] have proposed an attack
against several public key cryptosystems based on lattice problems. They call their
attack a Reaction Attack . In their paper they describe how to mount a Reac-
tion Attack on a number of cryptosystems, including those suggested by McEliece,
Atjai-Dwork, and Goldreich-Goldwasser-Halevi. Since the NTRU public key cryp-
tosystem is also based on an underlying lattice problem, it is natural that a Reaction
Attack should exist for NTRU. In this note we explain how an NTRU Reaction At-
tack would work and we describe a number of ways in which a user of the NTRU
public key cryptosystem can thwart such attacks. Our main point will be that
before such an attack can begin to yield useful information, it must deform the
encrypted message sufficiently that the attack can be detected by the NTRU user.
We also note that such an attack can only hope to succeed if a single private key is
used for the decryption of a large number of messages. This is a situation that will
rarely arise in an NTRU based system, since the ease of NTRU key generation key
means that keys will be changed frequently.

1

NTRU Cryptosystems Technical Report #015 2

Section 1. A Reaction Attack on the NTRU PKCS — Summary

In this section we will briefly describe the main ideas for a Reaction Attack on the
NTRU PKCS. For complete details, see section 3 of this note. The idea underlying
a Reaction Attack is for the attacker to produce a sequence of encrypted messages e,
each of which has a significant probability of decrypting into a valid message and
also a significant probability of decrypting into an invalid message. It is assumed
that the attacker is able to distinguish which messages have valid decryptions and
which ones do not. This may be possible because an error message is generated
when an invalid message is received, or it may be possible via a timing attack in
which the attacker measures how long it takes a message to be decrypted.

In the Reaction Attacks described in [1], and in the Reaction Attack on the
NTRU PKCS described in section 3 below, one starts with a valid encrypted mes-
sage e and creates small modifications e′ = e+ ε. The attacker makes the modifica-
tion ε larger and larger until the modified message e′ causes a decryption error. By
comparing the ε’s that cause decryption errors to those that do not, the attacker
gains information about either the plaintext message m underlying e or about the
private key used to encrypt m.

We now briefly describe the Reaction Attack on the NTRU PKCS. For ba-
sic information and notation for the NTRU PKCS, see [2] or the NTRU web site
〈www.ntru.com〉. For details of the Reaction Attack, see section 3. An encrypted
NTRU message has the form e ≡ φh + m (mod q). The smallest modification
that an attacker can make to e and still have it sometimes decrypt correctly is to
replace e with e′ = e + npXi for some 0 ≤ i < N and some n ≥ 1. This will
cause a decryption failure (a so-called wrap or gap failure) if some coefficient of the
intermediate decryption polynomial a = pφg + mf is within np of q/2 and if Xif
has a corresponding +1 coefficent. The important point to observe is that for the
correct choice of n, the i’s which cause decryption failure for e + npXi will reflect
(with some shifting and possible duplication) the i’s for which the private key f
has a term of the form +Xi. Thus the attacker potentially gains information about
the +1 bits in the private key f . Similarly, using negative values for n may give
information about the −1 bits of f .

Note that the Reaction Attack does not compromise the hard mathematical
problem underlying the NTRU PKCS, which is the problem of finding the shortest
vector in a lattice of high dimension. None-the-less, it is a potentially serious attack
for implementations of the NTRU PKCS in hardware or software, so measures such
as those described in section 2 should be used to avoid such attacks.

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 3

Section 2. Countermeasures to Reaction Attacks on the NTRU PKCS

There are a number of methods that can be used to thwart Reaction Attacks against
the NTRU PKCS. Which one is best will depend on the particular implementation
environment.

Self-Referential Padding Solution
See NTRU Technical Report #016 “Protecting NTRU Against Chosen Cipher-

text and Reaction Attacks” for an easy and efficient method of Fujisaki and Okamoto
that simultaneously protects NTRU from reaction attacks and adaptive chosen ci-
phertext attacks. This method largely supercedes the other methods described in
this section, although there may be some situations in which the alternative meth-
ods are useful.

Disposible Key Solution
There is no chance for a Reaction Attack to succeed if any given public/private

key pair is used for only one message, or at most a few messages. This solution
would not be useful for public key cryptosystems such as RSA or ECC, because key
creation is quite time consuming. However, NTRU key creation is so fast that use
of disposible key pairs is a very reasonable option. Here is how the Disposible Key
Solution works in practice, say for transmitting credit card numbers (or exchanging
a private key to be used for a symmetric cipher) over the internet.

Suppose a consumer Bob wants to send his credit card number to buy an
item from Alice’s web site. When Bob makes his initial request, Alice creates a
public/private key pair and sends the public key to Bob. She also signs the public
key with a digital certificate proving that the public key was sent by Alice. Bob
checks the digital certificate, normally by using information from a trusted third
party. He then uses the public key to encrypt his credit card information and sends
it back to Alice.

Since each public/private key pair is used for only a single message exchange,
there is no possibility of mounting a Reaction Attack, or indeed of mounting any
sort of attack which depends on monitoring differences in the decryption process
for different messages.

Remark. Note that even if Alice were to use the same public/private key for all
transactions, Bob still needs to check that the key really comes from Alice. So
regardless of whether or not Alice uses disposible keys, Bob must verify some sort
of digital certificate or signature using information from a trusted third party.

Decryption Failure Tracking Solution
When NTRU parameters are chosen properly, very few correctly encrypted

messages will cause wrap or gap decryption failures, say no more than 1 wrap
failure in 105 messages and no more than 1 gap failure in 1010 messages. Thus it is
very easy for Alice, the private key owner, to tell when she is being subjected to a
Reaction Attack. If she keeps track of the number of wrap failure messages received,
she can simply discard the current key and replace it with a new public/private key

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 4

pair as soon as the number of wrap/gap failures exceeds (say) 5. If not under attack,
this will require changing keys after approximately half a million messages, not an
onerous burden; while an attacker will gain little information from 5 decryption
failures.

For even greater security, Alice might change keys after every wrap/gap failure.
In any case, given the ease of NTRU key creation, for added security from any type
of interactive attack, she might also want to automatically change keys after every
(say) 1000 messages.

These solutions suppose that it acceptable to have Alice change keys under
certain circumstances. This is not a problem in terms of speed or processor power,
because NTRU key creation is extremely fast and easy, but there may be situtations
in which Alice wants to use a single public/private key pair for a considerable period
of time. In this case the cheapest solution would be for Alice to keep a running
total of the number of wrap/gap failures associated to a given user. If this exeeds
a plausable number, say 5, Alice can simply stop responding to messages from that
user. One may ask why it is probable that the messages will all come from a single
user. This is because, as observed below in Section 3, a Reaction Attack depends on
repeated deformations of a single message. The simplest approach for an attacker
is to send the messages himself, revealing his identity after a short while. The next
simplest approach for an attacker is to intercept a message from a third party and
then resend deformations of it a multitude of times. This will at least alert Alice
that an attack is underway, though the attacker may remain annonymous. Finally,
in a rather extreme variant, the attacker could launch deformations of the same
message from a variety of forged email addresses. Once again Alice can become
aware that an attack is underway by the number of failures. In this last case it is
probably most cost effective to have the NTRU program simply notify Alice of the
attack. However,it is still possible, if desired to have a completely automated parry
to even the last form of reaction attack, as the following two comments will outline.

Induced Randomness Solution
It is possible to guard against Reaction Attacks by introducing some extra

randomness into the decryption process. This is similar to the sort of the methods
that are used to guard against timing attacks on RSA. We also note that induced
randomness may also defeat, or at least impede, the Reaction Attacks on the other
systems described in [1]. This form of defense can ultimately be averaged out by
a determined attacker, but the number of message decryptions required would be
considerably larger.

Recall that the attacker in a Reaction Attack takes a valid NTRU encrypted
message e and introduces a small variation e′ = e + ε, where the change ε might
have the form ε = npXi. The solution proposed here is that before beginning the
decryption process, Alice replaces the encrypted message e that she receives by the
altered message

E = e ± pXj1 ± · · · ± pXjr .

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 5

Here r is a fixed value (say r = 5 or r = 10), and Alice chooses the exponents
0 ≤ j1 < · · · < jr < N and the ±-signs randomly. She then proceeds to decrypt E.
If e is the encryption of a valid message m, then even with the alterations introduced
by Alice, there is a very high probability that E will decrypt properly to yield the
message m.

Now consider the situation from the point of view of the attacker. He sends
Alice the altered message e′ = e+npXi, so she will decrypt the message E +npXi.
The intermediate stage in the decryption process at which wrap/gap failures occur
is then given by the polynomial

pφg + fm + pf(nXi ± Xj1 ± · · · ± Xjr).

(See section 3 for more details.) Each time the attacker sends an altered message e′,
the exponents j1, . . . , jr and the ±-signs will change. Since they are each multiplied
by the polynomial f , this means that r random shifts of the polynomial f are being
added or subtracted from the total. The occurance of wrap/gap failure on the edge
of where it occurs is thus tremendously randomized. It is, of course, conceivable
that after a very large number of trials the attacker might be able to gather some
statistical information about f , but we observe that even for a minimal value of r,
say for r = 5, the number of possiblities for the induced randomness is 235, 238, and
243 for NTRU with parameters N = 167, N = 263, and N = 503 respectively.

Coefficient distribution analysis
We will close this section with a description of one final method that Alice can

use to passively ignore reaction attacks. As described in detail below, a reaction
attack requires the ”inflating” of the partial decryption of a message. This means
that the number of coefficients of the polynomial

pφg + fm + pf(nXi ± Xj1 ± · · · ± Xjr).

falling into ranges close to q/2 and −q/2 will be larger than expected. This will
always be the case when a reaction attack takes place. Alice can test for this inflating
of the above intermediate polynomial by counting the number of coefficients in the
ranges [−q/2,−q/2 + D] and [q/2 − D, q/2] (for an appropriate value of D) and
simply not responding to any inflated polynomials. It is easy to give a precise
formulation of this test in the unlikely event that Alice requires it.

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 6

Section 3. A Reaction Attack on the NTRU PKCS — Detail
In this section we will give a detailed description of a Reaction Attack on the
NTRU PKCS. We begin with a quote from section 4 of [1] which describes the idea
underlying such attacks.

The success of our attacks rely on a common weakness of the
PKCS we examined: given a ciphertext C, an attacker can pro-
duce a second ciphertext C ′ which has non-negligible probabili-
ties of decoding to the same plaintext and to a different plain-
text. . . .Each of these systems (McEliece, Atjai-Dwork, Gold-
reich-Goldwasser-Halevi) could be considered a closest point sys-
tem. . . . In all of these systems one could consider the class of
ciphertexts corresponding to a particular plaintext to be a sphere
surrounding a point in the respective space. By examining cipher-
texts which are close to each other in the space (but possibly in
different classes) we can determine the boundaries of this sphere
and hence the center of the sphere.

The Reaction Attack on the NTRU PKCS uses this idea of producing a modified ci-
phertext C ′ which has non-negligible probabilities of decoding to the same plaintext
and to a different plaintext. However, the notion of finding a sphere is not quite
appropriate, so instead a shift-and-compare method is used to reconstruct the key.

The basic idea is as follows. Let p, q, N be the usual NTRU parameters, let h, f
be a public/private NTRU key pair, and let

e = φh + m (mod q)

be an encrypted NTRU message. Further let

a = pφg + mf

be the usual intermediate step in the decryption process. (See [2] for a description
of NTRU parameters and the encryption and decryption processes.) The NTRU
decryption process proceeds smoothly provided that the largest coefficient of a, say
aµ, satisfies aµ ≤ q/2 and the smallest coefficient of a, say aν , satisfies aν > −q/2.
We say that wrap failure has occurred if either aµ > q/2 or aν ≤ −q/2. This does not
mean that the message cannot be decrypted, but it does mean that some additional
computation is necessary, and it might be possible for an attacker to detect this
additional time and deduce that wrapping failure has occurred. (There is also a less
common occurance called gap failure in which the difference aµ − aν > q. If gap
failure occurs, the decryption process takes even longer.) We are going to describe
a Reaction Attack on the NTRU PKCS based on the assumption that an attacker
is able to detect when a wrapping failure occurs. A similar, but somewhat more
complicated, attack is possible if the attacker is able to detect when gap failures
occur.

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 7

Let e be a valid message that decodes correctly, so aµ ≤ q/2 and aν > −q/2.
We will also assume that the polynomial a associated to the encrypted message e
has the following two properties:
(i) Aside from aµ, every coefficient of a satisfies ai ≤ aµ − p.
(ii) aµ +aν > p. Notice this inequality can be rewritten as q/2−aµ +p < aν +q/2,

so it says that aµ is p closer to q/2 than aν is to −q/2.
Since generally p = 2 or 3, there is a significant probability that a randomly chosen
message will have these properties. Further, even if they are not true, repetition of
the attack for several messages e will still give a significant amount of information
about f , although it will be somewhat harder to piece that information together.

Let np be the smallest multiple of p such that np + aµ > q/2. In other words,
n is chosen to satisfy
(iii) aµ + (n − 1)p ≤ q/2 < aµ + np.
Of course, the attacker doesn’t actually know the value of n, so he will execute the
algorithm with n = 1, 2, . . . until he finds an n that works. Or, if he is allowed only
a limited number of decryptions, he can guess a likely value for n.

The attacker transmits the encrypted messages

e + npXi for i = 0, 1, 2, . . . , N − 1

and monitors which ones cause wrap failure. Suppose that for i = i1, . . . , is the
messages e + npXi cause wrap failure, but that they are decrypted without wrap
failure for the other values of i. The attacker forms the polynomial

F = XN−i1 + XN−i2 + · · · + XN−is .

(If some ij = 0, note that XN = 1.) Recall that an NTRU private key f has
a certain number of coefficients equal to 1, a certain number of coefficients equal
to −1, and the rest equal to 0. I claim that the polynomial F constructed by the
attacker is a shifted version of the “1-coefficients” in f . More precisely,

Claim: The polynomial f − XµF has all of its coefficients equal to 0 and −1.

The proof of this claim is easy. When attempting to decrypt e + npXi, wrap
failure will occur if the polynomial

a′ := a + npXif

has a coefficient greater than q/2 or less than or equal to −q/2. The jth coefficient
of a′ is given by

a′
j = aj + npfj−i =




aj − np if fj−i = −1
aj if fj−i = 0
aj + np if fj−i = 1

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 8

where the subscripts on f are taken modulo N . We first observe that

a′
j ≥ aj − np

≥ aν − np

> p − aµ − np from (ii)
≥ −q/2 from (iii).

So a′ does not have wrapping failure from below. Next we note that if j 	= µ, then

a′
j ≤ aj + np

≤ aµ − p + np from (i)
≤ q/2 from (iii).

So the only coefficient of a′ which might possibly cause wrapping failure is a′
µ.

Indeed, since aµ ≤ q/2 and aµ + np > q/2, we see from its definition that a′
µ causes

wrapping failure if and only if fµ−i = 1. Thus the indices i1, . . . , is determined
above are exactly those indices i for which fµ−i = 1. It is immediate from this that
the polynomial F defined above has the property that XµF is equal to the terms
of the polynomial f that have coefficient equal to 1. This proves the Claim.

At this point the attacker has two options. He can use the information already
gained to aid him in his search for f via other means (brute-force, lattice reduction,
etc.). Or he can repeat the attack until he finds a message e whose related poly-
nomial a has the following two properties: (i′) Aside from aν , every coefficient of a
satisfies ai > aν +p; and (ii′) aµ +aν < −p. Then the same algorithm will give him
a polynomial G such that −XνG is equal to the terms of the polynomial f that
have coefficient equal to −1. It is then a simple matter to check the N different
polynomials F − XkG, 0 ≤ k < N , until finding a shifted version of f which will
function as a decryption key. (Note that the attacker doesn’t know the value of µ
or ν.)

We mention again that our assumption that e and a satisfy properties (i)
and (ii) are designed to simplify our description of the Reaction Attack. In general,
an arbitrary e+npXi will yield an a′ which may have both upper and lower wrapping
failures at one or more coefficients. But even in this general situation, by observing
which i’s lead to wrapping failure, one can gain significant statistical information
concerning the distribution of 1’s and −1’s in the private key f . Thus a small
multiple of N messages (e.g., between 3N and 10N messages) may well be enough
to compromise the security of the key, and it is even possible that some information
about the key could be gained in just a few messages.

The following pseudo-code algorithm describes how the Reaction Attack recov-
ers the 1-bit part of the private key f assuming properties (i) and (ii). We leave for
the reader the necessary alterations to recover the −1-bit part and to deal with the
case that (i) or (ii) is not true.

v1. August 1999; v2. June 2000

NTRU Cryptosystems Technical Report #015 9

Reaction Attack Against NTRU PKCS
Input: encrypted message e and public key h
Output: possible 1-bit part of private key f
Step 1: n := 1
Step 2: Loop:
Step 3: transmit e + npXi for i = 0, 1, . . . , N − 1
Step 4: if every e + npXi, 0 ≤ i < N, decrypts correctly
Step 5: n := n + 1
Step 6: goto Loop
Step 7: let i1, . . . , is be the i’s for which e + npXi

causes decryption failure
Step 8: return Xi1 + · · · + Xis

References
[1] C. Hall, I. Goldberg, B. Schneier, Reaction attacks against several public-key

cryptosystems, preprint April 1999, available at www.counterpane.com
[2] J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key

cryptosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June
1998, Lecture Notes in Computer Science 1423, J.P. Buhler (ed.), Springer-
Verlag, Berlin, 1998, 267–288

Comments and questions concerning this technical report should be addressed to
techsupport@ntru.com

Additional information concerning NTRU Cryptosystems and the NTRU Public
Key Cryptosystem are available at

www.ntru.com

NTRU is a trademark of NTRU Cryptosystems, Inc.

The NTRU Public Key Cryptosystem is patent pending.

The contents of this technical report are copyright v1. August 1999; v2. June 2000 by NTRU Cryp-

tosystems, Inc.

v1. August 1999; v2. June 2000

