NTRU Cryptosystems Technical Report

Report # 014, Version 1

Title: Almost Inverses and Fast NTRU Key Creation

Author: Joseph H. Silverman Release Date: March 15, 1999

Abstract. We explain how to use the "Almost Inverse Algorithm" of Schroeppel, Orman, O'Malley, and Spatscheck [1] to efficiently compute NTRU public/private key pairs.

Let m(X) be a polynomial in $(\mathbf{Z}/2\mathbf{Z})[X]$. The "Almost Inverse Algorithm" of Schroeppel, Orman, O'Malley, and Spatscheck [1] gives an efficient way to compute the inverse of the polynomial a(X) in the ring $(\mathbf{Z}/2\mathbf{Z})[X]/(m(X))$ provided that $\gcd(a(X), m(X)) = 1$ and m(0) = 1. Here is how the almost inverse algorithm works for the polynomial $m(X) = X^N - 1$ used by the NTRU Public Key Cryptosystem.

```
Inversion in (\mathbf{Z}/2\mathbf{Z})[X]/(X^N-1)
Input:
          a(X)
          b(X) \equiv a(X)^{-1} \text{ in } (\mathbf{Z}/2\mathbf{Z})[X]/(X^N-1)
Output:
          Initialization: k := 0, b(X) := 1, c(X) := 0,
Step 1:
                              f(X) := a(X), q(X) := X^N - 1
          Loop:
Step 2:
Step 3:
          do while f_0 = 0
               f(X) := f(X)/X , c(X) := c(X) * X , k := k + 1
Step 4:
          if f(X) = 1 then return X^{N-k}b(X) \pmod{X^N-1}
Step 5:
Step 6:
          if deg(f) < deg(g) then
Step 7:
               exchange f and g and exchange b and c
Step 8:
          f(X) := f(X) + g(X) \pmod{2}
          b(X) := b(X) + c(X) \pmod{2}
Step 9:
Step 10: goto Loop
```

Note that the number f_0 in Step 3 is the constant coefficient of f, and that the return value $X^{N-k}b(X) \pmod{X^N-1}$ in Step 4 is simply b(X) with its coefficients cyclically shifted k places. We also note that the speed of the Inversion Procedure can be significantly enhanced by a number of implementation tricks, such as expanding the operations on b, c, f, g into inline loop-unrolled code. We refer the reader to [1] for a list of practical suggestions.

In order to create NTRU public/private key pairs, one needs to compute the inverse of a polynomial modulo p for primes other than 2. Here is an adaptation of the almost inverse algorithm for the prime p=3, since this is the other value required for the standard NTRU parameter sets. (At the end of this note we will give a version for arbitrary primes.)

```
Inversion in (\mathbf{Z}/3\mathbf{Z})[X]/(X^N-1)
Input:
          a(X)
          b(X) \equiv a(X)^{-1} in (\mathbf{Z}/3\mathbf{Z})[X]/(X^N-1)
Output:
          Initialization: k := 0, b(X) := 1, c(X) := 0,
Step 1:
                              f(X) := a(X), g(X) := X^N - 1
Step 2:
          Loop:
          do while f_0 = 0
Step 3:
               f(X) := f(X)/X , c(X) := c(X) * X , k := k+1
Step 4:
          if f(X) = \pm 1 then return \pm X^{N-k}b(X) \pmod{X^N-1}
Step 5:
          if deg(f) < deg(g) then
Step 6:
Step 7:
               exchange f and q and exchange b and c
Step 8:
          if f_0 = g_0
               f(X) := f(X) - g(X)
Step 9:
                                     \pmod{3}
               b(X) := b(X) - c(X)
Step 10:
                                     \pmod{3}
Step 11: else
               f(X) := f(X) + g(X)
Step 12:
                                     \pmod{3}
               b(X) := b(X) + c(X)
Step 13:
                                     \pmod{3}
Step 14: goto Loop
```

In this routine, all computations are done modulo 3, so all coefficients are chosen from the set $\{-1,0,1\}$. Also, the two ± 1 's in Step 5 are chosen to have the same sign.

The creation of NTRU public/private key pairs often requires finding the inverse of a polynomial f(X) modulo not only a prime, but also a prime power, in particular a power of 2. However, once an inverse is determined modulo a prime p, a simple method based on Newton iteration allows one to rapidly compute the inverse modulo powers p^r . The following algorithm converges doubly exponentially, in the sense that it requires only about $\log_2(r)$ steps to find the inverse of a(X) modulo p^r , once one knows an inverse modulo p.

```
Inversion in (\mathbf{Z}/p^r\mathbf{Z})[X]/(X^N-1)
            a(X), p (a prime), r
Input:
            b(X) \equiv a(X)^{-1}
                                 \pmod{p}
            b(X) \equiv a(X)^{-1}
                                \pmod{p^r}
Output:
Step 1:
            q = p
            \quad \text{do while } q < p^r
Step 2:
                  q = q^2
Step 3:
                  \overline{b(X)} := b(X)(2 - a(X)b(X)) \pmod{q}
Step 4:
```

Finally, in the interest of completeness, we give a version of the almost inverse algorithm for an arbitrary prime p.

```
Inversion in (\mathbf{Z}/p\mathbf{Z})[X]/(X^N-1)
           a(X), p (a prime)
Input:
          b(X) \equiv a(X)^{-1} in (\mathbf{Z}/p\mathbf{Z})[X]/(X^N-1)
Output:
          Initialization: k := 0, b(X) := 1, c(X) := 0,
Step 1:
                               f(X) := a(X), \ \ g(X) := X^N - 1
Step 2:
          Loop:
           do while f_0 = 0
Step 3:
Step 4:
               f(X) := f(X)/X, c(X) := c(X) * X, k := k + 1
Step 5:
           if deg(f) = 0 then
               b(X) := f_0^{-1}b(X) \pmod{p} return X^{N-k}b(X) \pmod{X^N-1}
Step 6:
Step 7:
           if deg(f) < deg(q) then
Step 8:
               exchange f and g and exchange b and c
Step 9:
Step 10: u := f_0 g_0^{-1} \pmod{p}
Step 11: f(X) := f(X) - u * g(X) \pmod{p}
Step 12: b(X) := b(X) - u * c(X) \pmod{p}
Step 13: goto Loop
```

Why It Works

Since no explanation is given in [1], we briefly explain why the "almost inverse algorithm" works. The idea is that one starts with the vector (f, g) = (a, m). One then multiplies (on the right) by the following matrices:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} X^{-1} & 0 \\ 0 & 1 \end{pmatrix}, \qquad C_u = \begin{pmatrix} 1 & 0 \\ -u & 1 \end{pmatrix}.$$

Note that the effect of these transformations is

$$(f,g)A = (g,f),$$
 $(f,g)B = (X^{-1}f,g),$ $(f,g)C_u = (f-ug,g).$

So Step 4 is the matrix B, Step 9 is the matrix A, and Step 11 is the matrix C_u . Note that in Step 11, the value of u is chosen so that f - ug is divisible by X (i.e., so that its constant term is 0). Then in Step 4 we divide f by X until its constant term is non-zero. Also, in Step 9 we make sure that $\deg(f) \geq \deg(g)$. The net effect is that each time through the loop the total degree $\deg(f) + \deg(g)$ is reduced by at least 1, so eventually f becomes a constant (provided $\gcd(f,g) = 1$). Hence the algorithm terminates in at most $\deg(a) + \deg(m)$ iterations.

Thus the algorithm produces a sequence of transformations D_1, D_2, \ldots, D_r , where each D_i is one of A, B, or C_u , so that

$$(a,m)D_1D_2D_3\cdots D_{r-1}D_r=(\alpha,*),$$

where α is a non-zero number modulo p. Unfortunately, the coefficients of the product $D_1D_2\cdots D_r$ are not polynomials, because the matrix B has X^{-1} as an entry. Let k be the number of times that B appears in the product $D_1D_2\cdots D_r$. (It is easily seen that this is the value of k being computed by the algorithm.) Then $X^kD_1D_2\cdots D_r$ has coefficients that are polynomials, say

$$X^k D_1 D_2 \cdots D_r = \begin{pmatrix} a' & * \\ m' & * \end{pmatrix}.$$

Now multiplying on the left by (a, m) yields

$$(aa' + mm', *) = (a, m) \begin{pmatrix} a' & * \\ m' & * \end{pmatrix}$$
$$= (a, m)X^k D_1 D_2 \cdots D_r$$
$$= X^k (\alpha, *),$$

so we have

$$aa' \equiv \alpha X^k \pmod{m}$$
.

The question now is how does the almost inverse algorithm construct this value a'? The answer is that while it is applying the transformations D_1, D_2, \ldots, D_r starting from (a, m), it is applying the same transformations starting from (b, c) = (1, 0), except that in place of $B = \begin{pmatrix} X^{-1} & 0 \\ 0 & 1 \end{pmatrix}$, it instead applies $XB = \begin{pmatrix} 1 & 0 \\ 0 & X \end{pmatrix}$. Since B has been used k times, at the end of the algorithm the value of (b, c) is

$$(b,c) = (1,0)X^k D_1 D_2 \dots D_r = (1,0) \begin{pmatrix} a' & * \\ m' & * \end{pmatrix} = (a',*).$$

In other words, at the end of the algorithm, b has a value satisfying

$$ab \equiv \alpha X^k \pmod{m}$$
.

Since the value of α is simply f_0 (the constant term of f, which actually equals f at this stage of the algorithm), we see that $a^{-1} = f_0^{-1} X^{N-k} b$. (Note X^{-k} is equal to X^{N-k} , since we are working modulo $X^N - 1$.)

References

[1] R. Schroeppel, S. O'Malley, H. Orman, O. Spatscheck, Fast key exchange with elliptic curve systems, *Advances in Cryptology* — *CRYPTO 95*, Lecture Notes in Computer Science 973, D. Coppersmith, ed., Springer-Verlag, New York, 1995, 43–56.

Comments and questions concerning this technical report should be addressed to techsupport@ntru.com

Additional information concerning NTRU Cryptosystems and the NTRU Public Key Cryptosystem are available at

www.ntru.com

NTRU is a trademark of NTRU Cryptosystems, Inc.

The NTRU Public Key Cryptosystem is patent pending.

The contents of this technical report are copyright March 15, 1999 by NTRU Cryptosystems, Inc.