NTRU Cryptosystems Technical Report

Report # 014, Version 1

Title: Almost Inverses and Fast NTRU Key Creation
Author: Joseph H. Silverman

Release Date: March 15, 1999

Abstract. We explain how to use the “Almost Inverse Algorithm”
of Schroeppel, Orman, O’Malley, and Spatscheck [1] to efficiently
compute NTRU public/private key pairs.

Let m(X) be a polynomial in (Z/2Z)[X]. The “Almost Inverse Algorithm” of
Schroeppel, Orman, O’Malley, and Spatscheck [1] gives an efficient way to compute
the inverse of the polynomial a(X) in the ring (Z/2Z)[X]/(m(X)) provided that
ged(a(X),m(X)) = 1 and m(0) = 1. Here is how the almost inverse algorithm works
for the polynomial m(X) = X» — 1 used by the NTRU Public Key Cryptosystem.

Inversion in (Z/2Z)[X]/(XYN —1)

Input:
Output:
Step 1:

Step
Step
Step
Step
Step
Step
Step
Step
Step

= ©O© 00N Ok WwN

0:

a(X)
b(X)=a(X) ! in (Z/2Z)[X]/(XN -1)
Initialization: k:=0, b(X):=1, ¢(X):=0,
f(X):=a(X), g(X):=XN -1

Loop:
do while fy =0

fX):=f(X)/X, ¢(X):=c(X)*x X, k:=k+1
if f(X) =1 then return XV % p(X) (mod XV —1)
if deg(f) < deg(g) then

exchange f and g and exchange b and c
f(X) = f(X)+g(X) (mod2)
b(X) :=b(X)+c(X) (mod 2)
goto Loop

Note that the number fy in Step 3 is the constant coefficient of f, and that
the return value XV =% p(X) (mod XV — 1) in Step 4 is simply b(X) with its co-
efficients cyclically shifted k places. We also note that the speed of the Inversion
Procedure can be significantly enhanced by a number of implementation tricks, such
as expanding the operations on b, ¢, f, g into inline loop-unrolled code. We refer the
reader to [1] for a list of practical suggestions.

NTRU Cryptosystems Technical Report #014 2

In order to create NTRU public/private key pairs, one needs to compute the
inverse of a polynomial modulo p for primes other than 2. Here is an adaptation
of the almost inverse algorithm for the prime p = 3, since this is the other value
required for the standard NTRU parameter sets. (At the end of this note we will
give a version for arbitrary primes.)

Inversion in (Z/3Z)[X]/(XY —1)

Input: a(X)

Output: b(X)=a(X)™ ! in (Z/3Z)[X]/(XYN —1)

Step 1: Imnitialization: k:=0, b(X):=1, ¢(X):=0,
f(X)=a(X), g(X) =XV -1

Step 2: Loop:

Step 3: do while fp =0

Step 4: f(X)=f(X)/X, ¢(X):=c(X)*xX, k:=k+1
Step 5: if f(X)=+1 then return +XV*p(X) (mod XV -1)
Step 6: if deg(f) < deg(g) then

Step 7 exchange f and ¢ and exchange b and c
Step 8: if fo=go

Step 9: f(X):=f(X)—g(X) (mod 3)

Step 10: b(X):=b(X)—c(X) (mod 3)

Step 11: else

Step 12: J(X) = f(X)+g(X) (mod 3)

Step 13: b(X) :=b(X)+c(X) (mod 3)

Step 14: goto Loop

In this routine, all computations are done modulo 3, so all coefficients are
chosen from the set {—1,0,1}. Also, the two +1’s in Step 5 are chosen to have the
same sign.

The creation of NTRU public/private key pairs often requires finding the in-
verse of a polynomial f(X) modulo not only a prime, but also a prime power, in
particular a power of 2. However, once an inverse is determined modulo a prime p, a
simple method based on Newton iteration allows one to rapidly compute the inverse
modulo powers p”. The following algorithm converges doubly exponentially, in the
sense that it requires only about log,(7) steps to find the inverse of a(X) modulo p",
once one knows an inverse modulo p.

Inversion in (Z/p"Z)[X]/(XN —1)
Input: a(X), p (a prime), r
b(X)=a(X)"! (mod p)
Output: b(X)=a(X)"! (modp")
Step 1: g=p
Step 2: do while ¢ <p"
Step 3: q=q>
Step 4: b(X):=b(X)(2—a(X)b(X)) (mod q)

March 15, 1999

NTRU Cryptosystems Technical Report #014 3

Finally, in the interest of completeness, we give a version of the almost inverse
algorithm for an arbitrary prime p.

Inversion in (Z/pZ)[X]/(XYN —1)

Input: a(X), p (a prime)

Output: b(X)=a(X)™ ! in (Z/pZ)[X]/(XN —1)

Step 1: Initialization: k:=0, b(X):=1, ¢(X):=0,
f(X):=a(X), g(X):=XVN -1

Step 2: Loop:

Step 3: do while fp =0

Step 4: f(X)=f(X)/X, ¢(X):=c(X)*xX, k:=k+1
Step 5: if deg(f) =0 then

Step 6: b(X) := f5'6(X) (mod p)

Step 7 return XV7Fp(X) (mod XV —1)

Step 8: if deg(f) < deg(g) then

Step 9: exchange f and ¢ and exchange b and c
Step 10: u:= fog; ' (mod p)

Step 11: f(X):= f(X)—ux*xg(X) (mod p)

Step 12: b(X):=b(X)—uxc(X) (mod p)

Step 13: goto Loop

Why It Works

Since no explanation is given in [1], we briefly explain why the ”almost inverse
algorithm” works. The idea is that one starts with the vector (f,g) = (a,m). One
then multiplies (on the right) by the following matrices:

0 1 xX-1 0 10
=) w0 1) e (A)

Note that the effect of these transformations is

(fL9A=(9.1), (/,99B=X""1.9), (f,9)Cu=(f —ug,9).

So Step 4 is the matrix B, Step 9 is the matrix A, and Step 11 is the matrix C,,.
Note that in Step 11, the value of u is chosen so that f — ug is divisible by X (i.e.,
so that its constant term is 0). Then in Step 4 we divide f by X until its constant
term is non-zero. Also, in Step 9 we make sure that deg(f) > deg(g). The net effect
is that each time through the loop the total degree deg(f) + deg(g) is reduced by
at least 1, so eventually f becomes a constant (provided ged(f,g) = 1). Hence the
algorithm terminates in at most deg(a) + deg(m) iterations.

Thus the algorithm produces a sequence of transformations D, Ds,...,D,,
where each D; is one of A, B, or C,, so that

(0,, m)DngDg T Dr—lDr = (Of, *),

March 15, 1999

NTRU Cryptosystems Technical Report #014 4

where « is a non-zero number modulo p. Unfortunately, the coefficients of the

product D;D5--- D, are not polynomials, because the matrix B has X! as an

entry. Let k& be the number of times that B appears in the product D1 Dy --- D,.
(It is easily seen that this is the value of £ being computed by the algorithm.) Then
X%D1 Dy --- D, has coefficients that are polynomials, say

/!
X*D1Dy---D, = < . I) .
Now multiplying on the left by (a,m) yields

(ad’ + mm’, %) = (a,m) (@ *)

m *

= (a,m)X*D1D,--- D,

so we have
I _— k
aa’' = aX”® (mod m).

The question now is how does the almost inverse algorithm construct this
value a’? The answer is that while it is applying the transformations D1, Ds, ..., D,
starting from (a,m), it is applying the same transformations starting from (b, c) =

(1,0), except that in place of B = (Xo_l (1)) , it instead applies X B = ((1))0() Since B

has been used k times, at the end of the algorithm the value of (b, c) is
Kk a’ * !
(b,C):(l,O)X D1D2DT:(1,O) (m, *> :(a,*).

In other words, at the end of the algorithm, b has a value satisfying
ab=aX"® (mod m).

Since the value of « is simply fo (the constant term of f, which actually equals f
at this stage of the algorithm), we see that a=! = f; ' XN=kp. (Note X ~F is equal
to XV—* since we are working modulo X~ — 1.)

References

[1] R. Schroeppel, S. O’'Malley, H. Orman, O. Spatscheck, Fast key exchange with
elliptic curve systems, Advances in Cryptology — CRYPTO 95, Lecture Notes
in Computer Science 973, D. Coppersmith, ed., Springer-Verlag, New York,
1995, 43-56.

March 15, 1999

NTRU Cryptosystems Technical Report #014 5

Comments and questions concerning this technical report should be addressed to
techsupport@ntru.com

Additional information concerning NTRU Cryptosystems and the NTRU Public
Key Cryptosystem are available at

WWw.ntru.com

NTRU is a trademark of NTRU Cryptosystems, Inc.
The NTRU Public Key Cryptosystem is patent pending.
The contents of this technical report are copyright March 15, 1999 by NTRU Cryptosystems, Inc.

March 15, 1999

