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Abstract. In this note we describe, extend, and analyze the lattice
construction ideas of Alexander May [1] as they apply to the
NTRU public key cryptosystem. We use both theoretical and
experimental methods to analyze the strength of the attacks. The
final conclusion is that the new attacks only marginally affect the
security levels of the standard commercial NTRU parameter sets
(N =167, 263, and 503), but that the new lattices can be helpful
for very low security levels (N = 107).

In this note we describe, extend, and analyze the lattice construction ideas of
Alexander May [1] as they apply to the NTRU public key cryptosystem. We use
both theoretical and experimental methods to analyze the strength of the attacks.
The final conclusion is that the new attacks only marginally affect the security levels
of the standard commercial NTRU parameter sets (N = 167, 263, and 503), but
that the new lattices can be helpful for very low security levels (N = 107). We will
concentrate entirely on the underlying lattices. For details of the NTRU public key
cryptosystem, see [2].

§1. The Standard NTRU Lattice.

For the convenience of the reader, we briefly review the set-up of the Standard
NTRU Lattice LNT. Further details may be found in [3], which also contains the
definitions of the various lattice constants referred to below.

Fix integers N, d¢, and d,. Let S4 be the set of N-tuples with d coordinates
equal to each of 1 and —1 and with the remaining N — 2d coordinates equal to 0.
Similarly, let S’, be the set of N-tuples with d coordinates equal to 1, with d — 1
coordinates equal to —1, and with the remaining N —2d + 1 coordinates equal to 0.
An NTRU private key consists of a pair of vectors

f = (anflw"afN—l) S S(ij and g = (g0agla"',gN—1) S Sdg-

The Standard NTRU Lattice LNT is the lattice of dimension 2N generated by
the row vectors of a matrix of the following form, where (hg,...,hy_1) is a known
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list of integers:

/)\ 0 0| ho M1 th—l\
0 A 0| hi he ho
gyt _ |00 - A ANy ho - hnoo
00 --- 0 7 0 - 0
00 --- 0 0 q -~ 0
\0 0 --- 0 0 0 --- g ),

The constant A is a balancing constant which is chosen to maximize the efficiency
of the search for small vectors in the lattice. (It turns out that the best choice for
the attacker is A = || f||/llg]l-)

The attacker knows that the lattice contains the relatively short vector!

vV = ()‘f07 X 'a)‘fN—17907 s 7gN—1)-

Further, it is clear from the cyclical nature of the A portion of the matrix that LNT
also contains the vectors obtained by shifting the f and g coordinates of v cyclically
an equal amount. We will denote these shifted vectors by

V(k) = (fk:a fk+la KRR fk—lagkagk-i-l’ ce ’gk_l)'

Thus v = v(9, and LNT contains all of the vectors v(?, ... v(¥N=1_ The attacker
knows the vector h, which is the NTRU public key, so he knows the lattice LNT,
and his goal is to recover the unknown vectors f, g from the lattice LNT or some
similar lattice.

Extensive experimental evidence [3] (see also [2]) suggests that for lattices in
which certain lattice constants are held constant, the log time needed to find a
target vector grows (at least) linearly in the dimension. In other words, for families
of NTRU-type lattice we have

log(T)>A-N+ B
for certain constants A and B. To give specific examples from [3]

log(T') > 0.2002- N — 7.608 for lattices of type NTRU 167 and NTRU 263,
log(T) > 0.1339- N —2.9983 for lattices of type NTRU 107.

(The type refers to the value of ¢ and the ~y lattice constant described in [3].)

T As we have formulated the problem here, the actual NTRU key is the vector (fo,fn—1,.--,f1), but
this reflection of coordinates is irrelevant in studying lattice attacks.
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§2. May’s Zero-Run Lattices.

Alexander May [1] has introduced what he calls Zero-Run Lattices which are de-
signed to take advantage of long runs of 0’s in NTRU target vectors. May’s basic
idea is to multipy  columns of the matrix generating LNT by some large number 6.
The effect is to encourage (or even force) the lattice reduction algorithm to find vec-
tors for which those r coordinates are equal to 0, since otherwise those coordinates
will have magnitude at least equal to 6, and thus will not be small.

In his paper, May chooses r consecutive columns, which means he is looking
for a target vector which contains r consecutive zeros, or as he calls it, a zero-run
of length r. Note that it is enough for g to have r consecutive zeros anywhere in
its list of coordinates, since then one of the shifted target vectors v(¥) will have
r-consecutive zeros in the correct places.

We would like to suggest that rather than multiplying consecutive columns
by 0, it is actually advantageous to multiply r random columns of LNT by §. There
are two reasons why using randomly chosen columns is a better strategy:

e It is easy for the key creator to thwart an attack via zero-run lattices by simply
requiring that f and g not have long strings of zeros. For example, the key
creator could force a £1 whenever 10 consecutive zeros have been chosen. If
random columns are chosen, this remedy is not available to the key creator.

e The attacker will “win” if the columns he chooses correspond to zero coordi-
nates in one of the shifts g(®) of the the unknown vector g. Now it can happen
that there are actually two different shifts ¢g(*1) and ¢(*2) which win. This
means that the lattice contains two different target vectors. It turns out that
having two target vectors does not seem to help lattice reduction very much.
(Indeed, May’s underlying idea is to take the lattice LNT, which has N target
vectors, and break the symmetry until there is only one target vector.) It turns
out that multiple winners are more likely to occur if the attacker chooses con-
secutive columns than if he chooses randomly chosen columns. Since the total
number of winners, counted with multiplicity, in the space of all g’s doesn’t
depend on the choice of columns, and since the attacker’s goal is simply to
choose a single winning set of columns, he does best if most winners are only
single winners. Thus by choosing random columns, he will spread the winning
entries as widely as possible.

In conclusion, it is in the attacker’s best interest to always choose random columns.
§3. Zero-Forced Lattices.

Regardless of whether the attacker decides to multiply consecutive columns or ran-
dom columns of LNT by a large number 6, the net effect is to encourage (and
ultimately force) the lattice reduction algorithm to find vectors with zeros in those
specified coordinates. There is a much more efficient way to achieve the same goal,
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namely create a smaller dimensional lattice in which the specified coordinates are
forced to equal zero. In this section we describe how such Zero-Forced Lattices are
created. These lattices should always outperform the zero-run lattices described
in May’s paper. However, we want to stress that these zero-forced lattices are a
natural generalization of May’s original idea to take advantage of the large number
of zeros in the NTRU target vectors.

The first step in forming a Zero-Forced Lattice is to choose a set of indices

J ={j1,J2,-- s Jr} satisfying  0<jy <ja<---<jgpr <N
We will search for target vectors whose 55¢, 554, ..., jth coordinates are equal to zero.

To do this, we write out the original congruences that were used to form the LNT
lattice:

fohj + fihjz1+ -+ fn—1hj—1 =g; (mod g), 0<j<N.

We are now going to require that g;,...,g;, = 0, which gives us r linear re-
lations modulo ¢ for the f;’s.¥ So we can simply solve these r congruences for
fN_ry...y fn_1 in terms of fy,..., fnv_r_1 and substitute back into the remaining

N — r congruences to get a new system of congruences
aojfot+ayifi+---+tan-1-rjfn-1-+r=g; (modgq) for0<j<N,j¢J.

(To prevent that key creator from stacking the deck against us, it might be better
to solve for r random fx’s in terms of the others, rather than using the last r
coordinates of f.) Here the a;;’s are known quantities, and the fi’s and g;,’s are the
unknown quantities. Notice that we now have a system of only N — r congruences
in 2(N — r) unknowns, so we define the Zero-Forced Lattice L%F to be the lattice
of dimension 2(/N — r) spanned by the rows of the following matrix:

Do dij

L7F _ 00 --- 1

7 =100 - 0lg 0 - 0
\0 0 - 0[0 o0 --- ¢

i For simplicity, we assume the attacker forces zeros in g, since in general g has more zeros than f.
A similar analysis works if the attacker forces zeros in f, or in both f and g simultaneously.
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The 25 indices in the upper righthand part of the matrix are over the range 0 <7 <
N—rand 0<j < N with j ¢ J.
To describe the target vectors in L%F | we let

ng):(fi+k)ogz’<N—r I (gj+k)j¢J’

where || indicates concatination of the two vectors. In other words, V(Jk) is equal
to v(®) with the last 7 coordinates removed from its f-part and with the J-coordi-
nates removed from the g-part. Note that v(Jk) will be in the lattice LZY if and only
if the J-coordinates of v(¥) are all zero, since we’ve assumed that they were all zero
in creating L%F.

The fact that we’ve reduced the dimension of the search lattice will certainly
speed up the search using LLL or similar lattice reduction algorithms. On the
other hand, the lattice L%F won’t contain any target vectors at all unless we've
chosen a J for which some v(¥) has all of its J-coordinates equal to zero. If r is
large, the probability of choosing a good J is small; the estimated search time is
inversely proporational to this probability. It is thus very important to estimate
this probability.

Proposition. Fix integers N, m,r. Let a = (ag,...,any—1) be a randomly chosen
vector with N —m of its coordinates equal to zero and the remaining m coordinates
non-zero, and let J = {ji,J2,---,Jr} be a set of randomly chosen indices with
0<n<je<---<gr <N.

(a) Prob(aj, = --- = a;, = 0) = (J(Vg) :ii:[: (1_ N’"_Z)

m—1 N
Gtk =-=0a5,46k=0Y\ _, [, _ __T
(b) Prob( for some 0 < k < N )Nl (1 H (1 N-i))

1=0

Proof. (a) If we specify that a chosen set of 7 of the coordinates of a must be 0, then
the number of possible a’s is simply the number of ways to choose m coordinates
to be non-zero among the remaining N — r coordinates. There are thus (Nn:T) ways
to choose a subject to the conditions aj, = --- = a;, = 0. Since there are (V)
possible a’s if we impose no conditions, the result follows.

(b) We write a(*) for a with its coordinates shifted k-places to the left. From (a) we
know the probability of “winning” for each individual a(*). Hence the probability
that some a*) wins is simply 1 minus the probability that they all “lose”, which
is the formula given in (b). [Remark. The reason the formula in (b) is only an
approximation is due to the fact that the probability of the different a(*)’s winning
are not entirely independent. However, for even moderate values of » and random
choices of J, the formula in (b) will be quite accurate. And if one chooses some
special J, for example J = {0,1,...,r—1} as suggested by May [1], then the actual
probability in (b) will be considerably lower than given by the formula.]
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Table 1 uses the Proposition to compute the probability that a randomly chosen
zero-forced lattice L4F will contain at least one target vector for four sets of sample
NTRU parameters. Note that in applying the Proposition, we take m = 2d,, since g
contains 2d, non-zero coordinates.

N dg r =20 r =30 r =50
107 | 12 | 30.688% 1.162% 0.000%
167 | 20 | 37.617% 1.729% 0.001%
263 | 24 | 98.112% | 34.070% | 0.329%
503 | 72 | 39.727% 1.400% 0.001%
Table 1. Probability that LYT contains a target vector

Table 1 clearly indicates that as r increases, there is a significant loss of efficiency
due to the fact that most lattices will have no target vectors at all. Of course, there
is also a gain in search efficiency due to the fact that the lattices will have smaller
dimension.

For example, if the probability that L%F has a valid target vector is 1%, then
one expects to examine roughly 50 lattices before finding one that works. So if the
improvement in breaking time due to the lower dimension is less than 50, then the
net effect is a loss.

As explained in Section 1 (and in [3]), the breaking time for an NTRU-type
lattice grows (at least) like

log(T) = AN + B.

A standard NTRU lattice LNT has dimension 2N, and an associated zero-forced
lattice LZF has dimension 2N — 2r, so the time gained using the zero-forced lattice
instead of the standard lattice is

exp(AN + B) _ A

exp(A(N —r) + B)

In other words, if it takes time T to find a target vector in LNT, then it will take
time e~4"T to find a target vector in LZF. This looks like a significant gain, but
remember that it must be balanced against the fact that if r is large, then it is very
unlikely for LZF to contain any target vectors at all.

Thus the actual gain in time, which we will denote by gain(LZF : LNT), is the
product of the probability that LZ¥ is a winning lattice (i.e., that it has at least
one target vector) multiplied by the time gained once we are lucky enough to find
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a winning lattice. Thus

gain(L7F : INT) = Prob ( L7ZF is a ) . <Time to find target in LNT)

Time to find target in LZF

2dg—1 N

=lt-[1- ]I <1—NT_Z_) AT

1=0

winning lattice

(Note that m = 2d, in the proposition, because g has 2d, non-zero coefficients, half
of them +1 and half of them —1.) The optimal choice of r depends on the original
parameter set, specifically on N and dg, and on the slope of the line log(T) = AN+B
describing how the breaking time increases with dimension. It is difficult to give
a formula for this optimal r, but for any particular values N,d,, A, it is easy to
substitute r = 1,2,3,...,2d, and find the best value.

We now do this for the sample NTRU parameter sets listed in Table 3. We
begin with the NTRU 167 and NTRU 263 sets. The experiments in [3] suggest that
the breaking time 7" for these parameter values is

log(T) = 0.2002 - N — 7.608.

Using A = 0.2002 in the formula for the gain, we find the optimal value of r is
r = 18 for NTRU 167 and r = 32 for NTRU 263. Using the same formula for
NTRU 503 (see the remark below) gives 7 = 18 optimal. Finally, the extrapolation
line for NTRU 107 in [3] is

log(T) ~ 0.1339N — 2.9983,

which leads to an optimal » = 16. We collect all of this information in Table 2, which
also gives the gain, the probability that a randomly chosen LZF will be a winning
lattice, and the expected time T (in MIPS-years) to find and break a winning zero-
forced lattice. (The corresponding times for standard NTRU lattices are given in
[3, Table 3 and Section 3].)

Parameters | N | d, A r | Prob | gain | T(MIPS-yrs)

NTRU 107 | 107 | 12 | 0.1339 | 16 | 0.72 6.16 0.172

NTRU 167 | 167 | 20 | 0.2002 | 18 | 0.59 | 21.57 9.63 - 10*

NTRU 263 | 263 | 24 | 0.2002 | 32 | 0.23 | 139.7 3.30 - 1012

NTRU 503 | 503 | 72 | 0.2002 | 18 | 0.64 | 23.56 1.43-1034
Table 2. Time Gain Using Zero-Forced Lattices

We now make a number of important observations regarding the information
contained in Table 2.
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N (L) q ds dg dg
107 2.658 64 15 12 5
167 3.049 128 61 20 18
263 3.032 128 50 24 16
503 4.081 256 216 72 95
Table 3. Sample NTRU Parameter Sets

Remark. The optimal choice of » and amount of time gained depends very strongly
on the slope A of the line relating log breaking time to dimension. If we take a larger
value for A, then r and the gain will increase. For example, it is explained in [3] that
the slope A = 0.2002 for NTRU 167 and NTRU 263 is probably too low, because the
graph of the experimental data seems concave up. We used this probably low value
for A in [3], because it meant that we were being very conservative in estimating
breaking times. Suppose that instead we use the extrapolation line

log(T) ~ 0.2582 - N — 12.484

obtained in [3] by dropping the first few data points. Then the optimal values
of r for NTRU 167 and NTRU 263 are » = 21 and r = 53 respectively, and the
corresponding gains are 65.8 and 1336. The latter especially seems quite impressive.
However, it is an illusion. The reason is that while the zero-forced versus standard
gain for NTRU 263 has increased 10-fold from 139.7 to 1336, the actual time needed
to break NTRU 263 using zero-forced lattices has increased 3000-fold. The following
two statements help to illustrate this point:

e If the correct slope for NTRU 263 is A = 0.2002, then it takes 3.65-10'° seconds
to break LNT, and it take 2.61- 107 seconds to find and break a winning L%,
so the gain in time is 139.7.

e If the correct slope for NTRU 263 is A = 0.2582, then it takes 1.17-10%* seconds
to break LNT, and it take 8.79 - 102° seconds to find and break a winning L%,
so the gain in time is 1336.

The conclusion is that using a smaller slope for extrapolation purposes is always
the more conservative approach when estimating breaking times, even though larger
slopes increase the relative effectiveness of using zero-forced lattices.

Remark. The previous remark applies especially to our use of the extrapolation
line log(7T) ~ 0.2002 - N — 7.608 for the NTRU 503 parameter set. As explained
in [3], the true extrapolation line for NTRU 503 is almost certainly considerably
steeper than this, so the optimal r for NTRU 503 is undoubtedly larger than 18,
and the gain from using zero-forced lattice much better than 23.56. However, the
net effect of using a more accurate (higher) slope will be that the estimated time
needed to break NTRU 503, even using zero-forced lattices, will increase above the
already huge value listed in Table 2.
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Remark. The experiments in [3] were conducted on families of lattices for which
a certain quantity called the y-constant was held constant. The y-constant for the
standard NTRU lattice is equal to

’Y(LNT) _ I47Te||fq|| j ||g|| ]

(See [3] for the definition of «y; for our purposes it suffices to know that as 7 increases,
it becomes more difficult for lattice reduction algorithms to find the target vector.)
From this formula we see that a zero-forced lattice L%F has the same ~y-constant
as the standard lattice from which it was created This is true because only zero
coordinates have been eliminated from f and/or g, so the quantities ||f|| and ||g]|
remain the same. Thus the formula in [3] describing the breaking time for an LNT
lattice will also describe the breaking time for its associated LZF lattices.

Remark. Alexander May (private communication) has pointed out, and we had al-
ready noticed, that the use of zero-forced lattices allows at least a partial paralleliza-
tion of the attack on NTRU. All known lattice reduction methods are sequential
in nature, so use of many widely dispersed low power computers is of limited value
in speeding up the LLL algorithm. This is in marked contrast to, say, the number
field sieve, Pollard’s rho method, or the index calculus, which have a probabilistic
element making them suitable for distributed computing.

Using zero-forced lattices introduces a similar probabilistic component into
lattice reduction. Taking a large r makes it quite unlikely that any particular L%F
will have a winning vector; but if one has access to M separate computers, then
each computer can set a different collection of coordinates equal to 0, and it suffices
if any one computer chooses a winning lattice. Note, however, that if two or more
computers choose winning lattices, no time is gained, since each winning computer
will take about the same amount of time to actually find the target vector.

Based on this discussion, it is easy to quantify the time gained through the use

of M distributed computers, each of which chooses a zero-forced lattice containing
T Z€ros.

Some computer has) All M computers
Prob ( a winning L%F > =1 —Prob (have losing LZF’S)

A single computer M
=1~ Prob ( has a losing L%F )
2d,—1 NM
r
=1-[1- 1—
I (- 5)
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To ease notation, we let
2d,—1

B=PB(N,dg,r) = 1_II<L_NZJ

1=0

so the probability of winning using M computers is 1—3™ . Note that the probability
of winning if only one computer is available is 1 — 3, so the use of M distributed
computers increases the probability of winning by a factor of

1—pM
1-p

If M is large, this will generally be considerably smaller than M, because # < 1.
In general, the gain using zero-forced lattices distributed on M machines is

=1+8+p+ - +pM L

gainy, (L7 : INT) = (1 - M)e?,

where A is the slope of the log(T") versus N regression line. For any given value of M
we can compute this gain for the optimal » and compare it to the gain obtained using
a single machine. If this were a true parallelization process, the use of M computers
should give an M-fold increase in speed, but as Table 4 makes clear, the benefits
of additional distributed processors fall off as M increases. The column labeled
“efficiency” measure to what extent using M processors leads to an M-fold decrease
in breaking time. Thus an efficiency of 25% means that M processors decreased
the breaking time by a factor of M/4. The data in Table 4 is for NTRU 263 and
slope A = 0.2002. We have chosen NTRU 263 as our example because its small d,
makes it the most attractive for zero-forced lattice attacks.

M r gain, Efficiency
1 32 140 100.00%
5 38 549 78.60%
10 40 978 69.98%
25 44 2072 59.31%
100 49 6299 45.08%
500 99 22048 31.56%
1000 o7 37444 26.80%
1500 58 50744 24.21%

Table 4. Efficiency of Using M Distributed Processors
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83. Dimension Reduced Lattices.

The idea of using zero-forced (or May’s zero-run) lattices is to force certain coor-
dinates of the target vector to be zero. An alternative idea, also due to May and
described in his paper [1], is to simply discard some of the coordinates of the target
vector. Qualitatively, this has two effects, one good and one bad:
e The dimension of the lattice goes down, which helps the attacker.
e The the length of the target vector gets closer to the smallest expected non-zero
length, which hurts the attacker.

We now quantify these effects. We begin with a lattice L generated by the rows of
a 2n-by-2n matrix of the form
I, A
L= ( " In) .

Thus we could take L to equal the usual NTRU lattice LNT, in which case n = N;
or we might take L to be a zero-forced lattice L4, in which case n = N —r. We
write

v = (u,v) €L

for the target vector, where u and v are n-tuples. More generally, if v and v have
unequal lengths, we multiply the first n columns of L by a balancing constant A
which is chosen to make the lattice search as efficient as possible. (We will see below
that the optimal choice is A = ||v||/[|u]|-)

Next fix constants 0 < «, 8 < 1 with o+ § > 1. Starting with the matrix of L,
we randomly choose (3n of the first n columns and an of the second n columns. We
keep these (a + )N columns and discard the other columns. We denote by L, g
the lattice generated by the rows of the resulting 2n-by-(a + f)n matrix, and we
call it the («, 8)-dimension reduced lattice associated to L.

Note that although L, g is generated by 2n vectors, it has dimension (« + 8)n,
since its elements are (« + B)n-tuples. The target vector in L, g is the vector

which has length

| = \//\2||'uﬁ||2 + [lvall? & v/ BA2[[ull? + aflv]|?.

||Va7[3

The matrix defining L, g has the form

Ma, A
0 qJan )’
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where J,,, denotes an n-by-m matrix such that each column has exactly one 1, and
each row has either zero or one 1, with all other entries 0. The discriminant of L, g
is the greatest common divisor of the (a4 8)n-by-(a + §)n subdeterminants of the
matrix. To form a non-zero subdeterminant, we certainly need to take the Sn rows
which have X’s in them. If we also take the other (1 — 8)n rows from the top half,
we are still forced to take an — (1 — 8)n of the rows in the second half which have
¢’s in them. Hence any non-zero subdeterminant will divide

Aﬂnq(a-l-ﬂ—l)n’
and in general the gcd of the subdeterminants will equal this quantity. Thus we
may take Disc(Lg g) = Mngleth-1n,

We compute the various quantities associated to Lo g. (See [3] for the defini-
tions of these quantities.)

dim(Lqy g) = (o + B)n, Disc(Lq g) = APnglath—bn
dim(La ﬁ)
L, S B St Lo
0(La,p) re

T(Lag) = [[Va,gll & v/ BA2[ul]? + of|v|2

The attacker wants to make the ratio 7(Lq,g)/0(La,g) as small as possible, and one
easily checks that the best choice is A = ||v||/||u||. This leads to a lattice constant

T(Lap) 1 [2me . g0 o \1/(a+B)
—= = =/ —|u||"||v]|"¢q .
7 Los) q\/ - (lull®]lv]|*q)

Assuming that g||u|| > ||v]| and g||v|| > ||u|| (as will certainly be the case for NTRU
lattices), it is easy to check that 7 /o is strictly increasing as («, ) decreases, starting
from (1,1). (This is a nice exercise. It’s easiest to first take logarithms of both sides.)
Table 5 lists a few values for the parameter set

: im O£+,3 n — @
DlSC(La,lg)l/d Lap — %()\ﬂqaw 1)1/ (a+8)

N =263, ¢q=128, d;=50, d,=24.

a\pg 1.0 0.9 0.8 0.7 0.6 0.5

1.0 0.187 0.210 0.240 0.277 0.327 0.395
0.9 0.214 0.244 0.283 0.335 0.405 0.502
0.8 0.249 0.290 0.343 0.414 0.515 0.662
0.7 0.296 0.350 0.425 0.529 0.681 0.914
0.6 0.358 0.435 0.542 0.700 0.942 1.33
0.5 0.446 0.557 0.720 0.971 1.38 2.11

Table 5. 7(Ly)/0(Lyp) for N = 263
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It is clear from experiments that the time needed to find the target vector
increases quite rapidly as the lattice constant 7/c increases. This is also clear
theoretically, since as 7/0 gets closer to 1, the lattice reduction algorithm will have
more and more difficulty picking out the target vector from the large number of
vectors of length approximately o. Further, the length of the target vector and of
the smallest expected vectors will be getting closer to the length of the g-vectors
(note g won’t change), and as noted in [2] and [3], this will further decrease the
efficiency of lattice reduction methods. More precisely, it will increase the block
size needed before the lattice reduction algorithm is able to find any vector smaller
than a g-vector. Note that the running time is exponential in the block size.

The experiments performed by May [1] in low dimensions show a modest in-
crease in speed for the choices (o, 8) = (0.5,1.0) and (e, 8) = (0.8,0.8). May also
finds a somewhat better increase at the highest dimension he can handle, around
N = 100 to N = 107, but even for these dimensions the speed increase is not
substantial enough to seriously affect the security estimates for suggested NTRU
parameters N = 167, N = 263, and N = 503. Further, much of the gain at these
dimensions seems to reflect the experimentally observed fact that current lattice
reduction methods appear to “hit a wall” around dimension 200, at which point
running times jump quite substantially. So using May’s dimension reducing idea
for lattices whose dimension is a little past this wall can reduce the dimension to
before the wall, giving (in May’s data) up to 10-fold increases in speed. This does
not affect the NTRU security analysis, since at the recommended dimensions one
will not see a similar speed-up (unless there is another “wall” near the NTRU pa-
rameter dimensions, in which case the speed loss due to the wall would far outweigh
any gain from minor dimension reduction).
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