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Abstract. In this note we report on experiments with the lattices under-
lying the NTRUENCRYPT and NTRUSI1GNPublic Key Cryptosystems.
We present data for the time needed to find a small vector and use this
data to extrapolate expected breaking times for NTRUENCRYPT for rec-
ommended parameter values. We also extend the “zero-forcing” analysis
of [7] to include a check that the lattice strength in the lower-dimension,
zero-forced lattice can correctly be approximated by the same extrapo-
lation line as the non-zero-forced lattice.

1 Introduction

In this note we report on experiments with the lattices underlying the NTRU-
ENCRYPT Public Key Cryptosystem. These experiments extend those described
in [1]. We will concentrate entirely on the underlying lattices. For details of
NTRUENCRYPT, see [1].

2 The Standard NTRU Lattice

Fix integers N, q, dy, and d,. For any d, 0 < d < N, let S(d) be the set of
N-tuples with d coordinates equal to 1 and with the remaining N — d coordi-
nates equal to 0. Let the private key f, g be chosen at random from the spaces
S(dy),S(d,) and let

h=f"1xg

be the public key'. Here, as usual, operations occur in the ring
ZIX]/(XN =1).q) ,

and we identify the vector (ag, ay,as,...,an_1) with the polynomial ag+a; X +
UQX2 B i aNleNil.

! For efficiency reasons, h is often transmitted as p * f ! % g; this does not affect our
analysis.



The Standard NTRU Lattice LNT is the lattice of dimension 2N generated
by the row vectors of a matrix of the following form, where h = (hg, ..., hn—1) :

AO---0| hg hy-- hy_1

OX--- 0| hy hy--- ho

INT _ 00--- AMhny - 1ho--" hy 2
~100---0 ¢ 0--- 0
00---0[ 0 ¢q--- 0
00---0 0 0--- ¢

The constant A is a balancing constant which is chosen to maximize the efficiency
of the search for small vectors in the lattice.
An NTRUENCRYPT private key consists of a pair of vectors

f = (anfla"'afN—l) € S(df) and 9= (goagla"'vgN—l) € S(dg)v

and the attacker knows that the lattice contains the relatively short vector?

vV = ()‘foa'"7AfN—17gOa"'agN—1)a

which we will refer to as the target vector.

The attacker knows h, which is the NTRUENCRYPT public key, so he knows
the lattice LNT, and his goal is to recover the unknown vector v, or any other
vector of approximately the same length, from LNT. (For example, LNT contains
N vectors of the same length as v obtained by cyclically rotating the coordinates
of f and g.)

The length of a vector

w = (Awo, ..., \WN_1, W, ..., W_q)
is defined to be the centered norm
Wil = (V¥ (wo — ) + -+ X (w1 = p)* + (wy — p')* +- -+ (why_y — 1))/,
where
pw=(wo+ - +wy_1)/N and p' = (wy+---+wy_;)/N.

Srictly speaking, the optimal lattice problem to be solved to locate the target
vector v is a closest vector problem. Specifically, v € LNT will be a distance ||v||
from the non-lattice vector

(Au7"'7AM’u/7""ul)

2 As we have formulated the problem here, the precise NTRUENCRYPT key is the
vector (fo, fN—1,...,f2, fi), but this rearrangement of coordinates is irrelevant in
studying lattice attacks.



and this distance will be a bit shorter than the usual L? norm of v. As a practical
consequence this means that one will generally add an extra row and column
to LNT and try to solve a closest vector problem in this new lattice where the
dimension is increased by 1. In this exposition we will ignore this technicality
and do our analysis in the lattice LNT.

Two constants seem to be very relevant to the problem of locating short
vectors in lattices of the form LNT using LLL type techniques. These are

a = N/qa
c = \/4mel flll|gll/a-

These are related to basic constants associated to LNT in the following way. Let

o = shortest expected (non-zero) length of vectors in LNT,

|lv]| = length of actual shortest vector in LNT,

For a general lattice L, the Gaussian heuristic says that the length of the shortest
non-zero vector satisfies

dim(L im
o(L) ~ %Det(L)l/d (L),

The dimension and determinant of LNT are given by

dim(INT) = 2N,  Det(LNT) = (A\g)V

[ NgA
o=
e
vl = VX271 + Mgl -

For optimal use of lattice reduction techniques the balancing constant A
should be chosen to make the ratio ||v||/o as small as possible, since lattice re-
duction methods have been widely observed to work best when the target vector
is as small as possible compared to the many vectors of length approximately o.

It is easily checked that the optimal choice for the balancing constant is

A = |lgll/1If], which leads to
[Nl
mel| f|

Now ||v]|? = A2||£I|* + ||9]|* = 2||g||* and so v, c and o satisfy the relation

and so in LNT we have

and

e=vaniMl
g



A large number of experiments that we have performed over the past 6 years
support the hypothesis that if one holds ¢ and a constant, while increasing N
then the log time to find the target vector grows at least linearly with N. In
other words, if we let T = T(LNT) denote the amount of time it takes for LLL
to find a target vector in the lattice LNT of dimension 2N, then

logT > AN + B

for constants A and B. (In fact, the graph of logT against N is consistently
convex upwards.) For N even moderately large, i.e. greater than 50, if [|v|| < o /2
then LLL will consistently either fail to find a moderately short vector, or will
locate the target v or one of its rotations. This lends some credence to the use
of the Gaussian heuristic for lattices of this form.

The constants A and B depend upon ¢ and a in a way that we have not yet
quantified precisely. However it is clear that as either ¢ or a or both increase, the
constant A increases. Thus it appears to be true that ¢, a, N provide a measure
of the difficulty of finding the target vector v in LNT. In particular, as ¢, a, N
increase, the length of time necessary to locate v increases.

2.1 Alternative NTRU Lattice Problems

The paper [4] suggests taking f to be of the form 1+ pF, F' € S(dr). In this
case, the relevant lattice problem is derived as follows:

f*xh=gmodgq
= (1+pF)*h=gmodgq
= Fx(ph) =g—hmodq .

We therefore know that the vector (F,g — h) is in the lattice

1 ph
<0 q ) ’
and is (F,g) away from the known non-lattice vector (0,—h). The attacker’s
strategy is therefore to try to solve a CVP in this new lattice. The associated
lattice reduction problem will have the same expected running time as the re-
duction problem in the standard NTRU lattice described above, because the
discriminant, the dimension, and the constants ¢ and a are unchanged. There-

fore, although the current recommended parameter sets [1] take f = 1+ pF, it
is sufficient to analyze the running time of the case f € S(dp).

3 Experimental Results

All of the experiments in this note were run on 400 MHz Celeron machines
running the Linux operating system. The software used was Victor Shoup’s im-
plementation of the LLL algorithm with improvements due to Schnorr, Euchner



and Hoerner. Shoup’s NTL package is available at [8]. Most of the general re-
marks in [5] concerning lattice reduction algorithms apply to the experiments in
this note. In particular, we set Schnorr’s pruning constant to equal 0, because
we did not find that setting it to be positive improved the running time. We also
set the LLL constant 6 = 0.99, and we ran the program using increasing block
sizes until it found the target vector.

The experiments described in this note confirm the observation made in [5]
that (at least for the NTRU lattices) the algorithm generally either finds a vector
of the exact correct length, or it finds one that is considerably too long to be
useful for decryption. Thus the idea of Coppersmith and Shamir [2] to use vectors
a little longer than the target vector to attack NTRU, while very interesting as
a theoretical remark, does not appear to be of practical significance. In practice,
LLL generally seems to terminate with no significant progress until a sufficiently
large block size is used, at which point it finds the target vector. The necessary
block size increases roughly linearly with the dimension, and as one knows, the
running time of LLL increases exponentially with the block size.
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Fig. 1. Results of all experiments on breaking times. Times in seconds.

In general we have found that the smaller the values of ¢, a the larger the N
we can successfully apply LLL to. It was thus interesting to take a particularly
small set of values and continue the computation to as large an N as possible.



The smallest example we have investigated so far is the case ¢ = 1.73,a = 0.535.
Figure 1 gives the results of the experiments run to date. Times in this figure are
given in seconds; since the experiments were run on 400 MHz Celeron machines,
the time in seconds is converted to the time in MIPS-years by first multipying
by 400 (to account for the 400 MHz machines) and then dividing by 31557600,
which is the number of seconds in a year. In this case the graph of log(Tavg)
versus N is reasonably linear, although there is a noticable upward concavity.

Ninit| A B [T(N =251)[T(N = 503)
85 [0.054|-6.237 | 1.47 x 107 |5.78 x 10%°
95 [0.066]-7.590 | 7.15 x 10% [ 3.19 x 10
100 [0.076] -8.714 | 1.60 x 101° [ 2.17 x 10%°
105 [0.089]-10.219]9.18 x 10! [ 2.36 x 10**
110 [0.104[-12.036] 1.06 x 10 [ 2.15 x 10™
115 [0.121]-13.965] 1.45 x 10%° [ 3.51 x 10°

Table 1. Extrapolation line log,,(T") = AN + B depending on the start point. Times

are in MIPS-years.

Because of this concavity, the projected breaking time for high values of NV
depends greatly on the extrapolation method used. Our approach was as follows:

— Select a start point Njpj¢.
— For each value of N > Ny, average the breaking times.

— Plot the linear regression line through the log of these averages, log,o(T") =
AN + B.

Table 1 shows how the regression line, and the projected breaking times for the
typical values of N =251 and N = 503, depend on the value selected for Njpit.

Our choice is to take Njn;r = 111. This allows us to perform the linear extrap-
olation with 12 values of N and 120 experimental values for T'. We computed
the linear regression line for log,o(7") and found the values A = 0.1095,B =
—12.6402 with a correlation coefficient of .9807. The relevant data points are
shown in figure 2.

The formula

log1o T > 0.1095N — 12.6402

leads to the extrapolated breaking times given in table 2. Note that the values
of N given in table 2 are illustrative: only prime values of N are recommended.

We repeat that the choice of N, and the use of the linear extrapolation,
are somewhat conservative: the trend of the breaking times is clearly concave
upwards. It should be borne in mind that there is probably a lot of slack in the
figures given in this note, and that additional measurements at N > 120 may
allow us to improve our estimates of the lattice security of the current parameter
sets.
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Fig. 2. Average breaking time and minimum breaking time, in seconds, for N > 111.

N T Bit security
167 3.21 x 10° 57

251 [5.07 x 10™ 88

400 [1.05 x 1037 142
500 [9.33 x 10™ 178

600 [8.31 x 10°? 214
800 [6.59 x 107* 287
1000(5.23 x 10%° 360
Table 2. Breaking times and bit security for various N using the extrapolation line
log,, T > 0.1095N — 12.6402.




The above analysis gives the base level of security against lattice attack.
However, actual parameter sets must take into account zero-forcing techniques
that reduce the effective dimension. This is discussed in the next section.

4 Recommended Parameter Sets: Breaking Times and
Zero-Forcing

EESS#1, version 2 [1], suggests the parameter sets ees25lep4 and ees251ep5,
both of which have

N =251,q=239,f =1+pF,dy =72,dy =72,d, =72,
leading to the lattice values
c=2.709>1.73, a=1.05>0.535.

However, we cannot simply estimate the security by substituting N = 251 into
the formula
log,o T > 0.1095N — 12.6402,

because this does not take into account the effects of zero-forcing, described
in [7]. Zero-forcing consists of guessing a pattern of r zeroes that appear in
f; if the guess is correct, the effective dimension of the lattice is reduced to
2N — r. If the log of the breaking time for the lattice without zero-forcing is
given by log,,(T) = AN + B, then zero-forcing should reduce this log by Ar/2.
However, this result is only true if the zero-forcing does not significantly change
the characteristics of the lattice. We therefore briefly discuss this question.

Change in a due to zero-forcing — The parameter a goes from N/q to (2N —

r)/2q.

Change in ¢ due to zero-forcing — The centered norm of g in the zero-forced
lattice is the same as in the original lattice, neglecting the balancing factor;
however, the centered norm of f becomes \/ds(1 —ds/(N —r)). As r increases,
this centered norm will decrease, leading to a shorter short vector. The Gaussian
length o in the unbalanced lattice will increase, because the discriminant (the
volume of the fundamental parallelopiped) will stay the same but the dimension
will decrease. To be precise,

dlIIl 1/ dim(L)

2N —r N N—r
= q2N77’A2N77’ A
2Te

We therefore expect the zero-forcing to result in a ¢ more favourable to the
attacker. To quantify this effect, we next calculate the appropriate value for the
balancing constant A. This turns out to be

yyo Dol [N =7
17V N




leading to

N—nr
_ [2CN = (llgl\ T (NI T
zf N . N

(note that when r = 0 we recover the original value of c).

Applying formula (4) of [7] we see that the optimal choice of r for N =
251,d =72, A = 0.1095 is r = 17, leading to a speed up by a factor of 34. Using
the formulae above, we find

o = 0.901c = 2.442 > 1.73, a,r = 1.014 > 0.535 ,

so the extrapolation line with A = 0.1095 is still valid. The expected security is
therefore:

T = 1.37 x 10*MIPS-years;
Bit security = 83 .

As previously noted, our heuristic result is that higher values of ¢ and a
lead to increased breaking times at constant N. We therefore state with some
confidence that the time to break the given parameter sets will be at least 10'?
MIPS-years. The time to break an 80-bit symmetric cryptosystem is typically
taken to be about 10?2 MIPS-years [6]; this estimate of strength thus allows us
to recommend the above parameter set for use in systems that require 80-bit
security.

5 Further notes

This section outlines areas for future research.

New lattice techniques — It is to be expected that new lattice reduction tech-
niques will be discovered over time, or that currently existing lattice reduction
techniques which have not yet been applied to the NTRU lattice will prove to
be more efficient than the specific technique used in this technical note. These
will gradually reduce the estimated strength of this and other parameter sets.
This technical note will continue to be updated with the latest technical results
as appropriate.

Improved implementation of current techniques — The experiments in this note
were run using NTL [8], which is not optimized for NTRU lattices. Conceivably,
simply optimizing for the specific case under consideration could give a speedup
by a large constant factor. However, as noted before, the estimates of lattice
strength in this note are highly conservative, and a speedup by a constant factor
is unlikely to have a practical effect on the security of the system.
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NTRU-specific techniques — Currently, very few techniques for lattice reduction
are known that take advantage of the special properties of the NTRU lattice.
Notable examples of such techniques are [3,7]. As additional NTRU-specific
techniques are discovered and implemented this technical note will be updated
appropriately.
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