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Abstract. In this note we report on experiments with the lattices
underlying the NTRU Public Key Cryptosystem. We present
data for the time needed to find a small vector and use this data
to extrapolate expected breaking times for the NTRU PKCS for
various parameter values. In particular, we find that NTRU 167,
NTRU 263, and NTRU 503 are at least as secure as RSA 512,
RSA 1024, and RSA 2048 respectively.

In this note we report on experiments with the lattices underlying the NTRU Public
Key Cryptosystem. These experiments extend those described in [1]. We will
concentrate entirely on the underlying lattices. For details of the NTRU public key
cryptosystem, see [1].

§1. The Standard NTRU Lattice.

Fix integers N, ds, and d4. (See Table 1 below for typical values of these parame-
ters.) Let Sy be the set of N-tuples with d coordinates equal to each of 1 and —1
and with the remaining N — 2d coordinates equal to 0. Similarly, let S, be the set
of N-tuples with d coordinates equal to 1, with d — 1 coordinates equal to —1, and
with the remaining N — 2d 4 1 coordinates equal to 0.

The Standard NTRU Lattice LNT is the lattice of dimension 2N generated by
the row vectors of a matrix of the following form, where (hg,...,hy_1) is a known
list of integers:

/)\ 0 0| ho h1 -- hN—l\
0 A 0| hi  ha -+ ho
gyt _ |0 0 - A ANy hy - hnoo
0 0 --- 0 ¢ 0 - 0
00 - 0 0 q¢q -~ 0
\O0 0 - 0| 0 0 -- g )/

The constant A is a balancing constant which is chosen to maximize the efficiency
of the search for small vectors in the lattice.
An NTRU private key consists of a pair of vectors

.f = (an.flw"afN—l) S S(ij and g = (g0agla"',gN—1) S Sdga

1



NTRU Cryptosystems Technical Report #012 2

and the attacker knows that the lattice contains the relatively short vector’

V= ()‘f()u"'a)‘fN—lagOa"'agN—l)-

The attacker knows the vector h, which is the NTRU public key, so he knows
the lattice LNT, and his goal is to recover the unknown vector v, or any other
vector of approximately the same length, from LNT. (For example, LN' contains
N vectors of the same length as v obtained by cyclically rotating the coordinates
of f and g.)

We consider the following constants associated to a lattice L.

o(L) = shortest expected (non-zero) length of vectors in L,

7(L) = length of actual shortest vector in L,

_ ()
_ ) =
v(L) = (L) dim(L).

The attacker chooses the balancing constant A to make a as small as possible,
since lattice reduction methods work best when the target vector is as small as
possible compared to the many vectors in L of length approximately o. For a
general lattice L, the Gaussian heuristic says that the length of the shortest non-

zero vector satisfies

dim(L)
L) ~

U( ) 2me

For the standard NTRU lattice LNT, these constants have the values

Disc(L)Y/ dim(),

dim(LNT) = 2N,  Disc(INT) = (Ag)V,

ANq
o(LN) = e

T(LYT) = VR[IFII + Nlgll>.

Hence the optimal choice for the balancing constant is A = || f||/||g]|, which leads to

the lattice constants:
[2mel | - llg]l
LNT —
a( ) N M
Y(INT) = [4mellfII - lgll
q

f As we have formulated the problem here, the precise NTRU key is the vector (fo,fn—1,---,f2,f1),
but this rearrangement of coordinates is irrelevant in studying lattice attacks.
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N (L) q ds dg dg
107 2.658 64 15 12 3
167 3.049 128 61 20 18
263 3.032 128 o0 24 16
503 4.081 256 216 72 55

Table 1. Sample NTRU Parameter Sets

Experimental evidence described below suggests that if we hold y(LN™) con-
stant, then the log time to find the target vector (or a vector of approximately
equivalent length) grows at least linearly with the dimension. In other words, if we
let T = T'(LNT) denote the amount of time it takes for LLL to find a target vector
in the lattice LNT of dimension 2N, then

logT > AN + B
for constants A and B.
§2. Experimental Results I: NTRU 167 and NTRU 263.

Four sets of NTRU parameters are given in Table 1. For these parameter sets, the
value of the lattice constant

(1) = ) Em(D)
is equal to
2.676 if N =107,
Y(INT) = [4mellfll-1lgll _ ) 3.053 if N =167,
q 3.040 if N = 263,
8.801 if N = 503.

All of the experiments in this note were run on 400 MHz Celeron machines
running the Linux operating system. The software used was Victor Shoup’s imple-
mentation of the LLL algorithm with improvements due to Schnorr, Euchner and
Hoerner. Shoup’s NTL package is available at [2]. Most of the general remarks
in [1, Appendix] concerning lattice reduction algorithms apply to the experiments
in this note. In particular, we set Schnorr’s pruning constant to equal 0, because
we did not find that setting it to be positive improved the running time. We also
set the LLL constant 6 = 0.99, and we ran the program using increasing block sizes
until it found the target vector (or a vector slightly longer than the target vector).

The experiments described in this note confirm the observation made in [1]
that (at least for the NTRU lattices) the algorithm generally either finds a vector
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of the exact correct length, or it finds one that is considerably too long to be useful
for decryption. Thus the idea of Coppersmith and Shamir [3] to use vectors a little
longer than the target vector to attack NTRU, while very interesting as a theoretical
remark, does not appear to be of practical significance. In practice, LLL generally
seems to terminate with a g-vector (i.e., a vector with one coordinate equal to ¢
and the rest 0) until a sufficiently large block size is used, at which point it finds
the target vector. The necessary block size increases with the dimension, and as
one knows, the running time of LLL increases exponentially with the block size.

In this section we concentrate our attention on NTRU lattices with ¢ = 128
and with lattice constant

y(LNT) ~ 3.05,

since this covers the two sets of NTRU parameters NTRU 167 and NTRU 263. The
results of our experiments are given in Table 2. The first column gives the NTRU
parameter N, which we recall means that the NTRU lattice LNT has dimension 2N .
The third column gives the time needed (in seconds) to find a target vector for one
or more experiments at the given dimension. The time listed is the time required
on the final run; that is, using the block size which actually found a target vector.
The middle column gives the average amount of time needed to find a target vector
for the given value of N.

N Tavg Experimental Times T
68 691 691
70 889 764,934,969

72 1082 1029,1135

74 1222 1150,1294

76 1208 1208

78 | 1776 | 1487,1741,2101

80 2390 2390

82 5296 3656, 4656, 6087, 6785
84 9831 9808, 9853

86 12505 7325,17684

88 39652 15605, 40882, 62468
90 54453 30466, 78440

Table 2. Breaking Time (secs) for Lattices with ¢ = 128 and « = 3.05

The graph of log(Thayvg) versus N shows that the growth is reasonably linear,
although there is a noticable upward concavity. This upward concavity will only
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help us as we linearly extrapolate breaking times at higher dimension, so we compute
the linear regression line for the average times in Table 2:

log(T) =~ 0.2002 - N — 7.608.

Using this formula to estimate the time needed to find a target vector for NTRU 167
and NTRU 263 gives the values in Table 3.

N T (seconds) T (MIPS-years)
167 1.638 - 10! 2.077 - 108
263 | 3.634-10'° 4.607 - 10
Table 3. Estimated Breaking Times for NTRU 167 and NTRU 263

Note that all of the timing figures in Table 2 are in seconds. Since the experiments
were run on 400 MHz Celeron machines, we have converted the time in seconds to
the time in MIPS-years by first multipying by 400 (to account for the 400 MHz
machines) and then dividing by 31557600, which is the number of seconds in a year.

As mentioned above, the extrapolated breaking times given in Table 3 are very
conservative for the following reason. Examining the graph of the data in Table 2
(i.e., the graph of log(T") versus N), there is a clear upward concavity to the plotted
points. For example, if we remove the first three points, that is remove the points
with N = 68, 70, and 72, then the linear regression line for the remaining points is

log(T) = 0.2582 - N — 12.484.

This increased slope then leads to an extrapolated breaking time of T' = 2.537 - 108
MIPS-years for NTRU 167 and an extrapolated breaking time of T = 1.470 - 10'°
MIPS-years for NTRU 263.

We are currently conducting experiments for NTRU 503, which has ¢ = 256
and lattice constant y(LNT) = 8.8. However, even our preliminary data makes it
clear that the regression line for NTRU 503 will be considerably steeper than the
regression line for the lower values of N. So if we use the data from Table 2 to
extrapolate the breaking time for NTRU 503, the resulting time is almost certainly
much lower than the truth; yet even this conservative estimate says that it would
take about 2.663 - 10%° seconds (which equals 3.375 - 1035 MIPS-years) to break
NTRU 503.
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§3. Experimental Results II: NTRU 107.

In the original formulation of the NTRU public key cryptosystem, it was suggested
that one could use N = 107 with quite small values of ¢, dy and dg4, to create a
cryptosystem with at least moderate security. Our experiments have shown that
such a system can probably be broken in between 12 and 24 hours on a single
400 MHz machine, and an idea of Alexander May [4] to guess a lattice of slightly
lower dimension might cut these times in half. (See also [5] for a detailed discussion
of May’s ideas, generalizations, and an analysis of their effect on the security of the
NTRU public key cryptosystem.)

We thus do not recommend NTRU 107 for most practical applications, although
its blinding speed could make it useful in some situations where speed is essential and
each message has only a very small intrinsic value. In any case, it is still interesting
to study the effectiveness of lattice reduction methods on smaller lattices of this
sort, since it helps to verify the general pattern of breaking time versus dimension
for NTRU lattices. In Table 4 we give the results of our experiments. The machines
and algorithms used are as described in Section 2.

N T N T N T
50 98 68 413 86 4766
92 76 70 526 88 3931
o4 80 72 712 90 4306
o6 104 74 735 92 14533
o8 147 76 723 94 12117
60 192 78 1244 96 15692
62 224 80 1671 98 106683
64 251 82 2114 100 196083
66 294 84 2720 102 19674

Table 4. Breaking Time (secs) for Lattices with ¢ = 64 and v = 2.676
The linear regression line for the data in Table 4 is
log(T') =~ 0.1339N — 2.9983,
and this leads to an estimated breaking time for NTRU 107 of
T(NTRU 107) ~ 8.34 - 10* seconds = 1.06 MIPS-years.

An examination of Table 4 shows that the times for N = 98 and N = 100 may
possibly be anomolous. To examine the robustness of our data, we recomputed the
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regression line and estimated breaking times with the N = 98 and N = 100 data
points removed. The results were

log(T) =~ 0.1190N — 2.0182
with an estimated breaking time of
T(NTRU 107) ~ 4.48 - 10* seconds = 0.57 MIPS-years.

Thus even removing these seemingly high values of T only cuts the estimated break-
ing time in half. We also note that the data in Table 4 exhibits the same small
upward concavity already observed in Table 2.
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Key Cryptosystem are available at
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