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Abstract. This note describes how the choice of a parameter set
(N, p, q, df , dg, dφ) for an NTRU Public Key Cryptosystem deter-
mine various operating characteristics of the cryptosystem, such
as the security level and the probabilities of wrapping failure and
of gap failure.
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§1. Wrapping Failure and Gap Failure.

For any polynomial

a = a0 + a1X + a2X2 + · · ·+ aN−1XN−1,

write

Max a = max ai, Min a = min ai, Spread a = Max a−Min a.

Consider an NTRU Public Key Cryptosystem using the parameters

(N, p, q, df , dg, dφ),

and let
b = pφg + mf

be a typical polynomial that occurs during the decryption process. We say that
wrapping failure occurs if either Max b ≥ q/2 or Min b ≤ q/2. We say that gap
failure occurs if Spread b ≥ q.

During the NTRU decryption process, Bob recovers the value of b mod q, but
he needs to have its exact value to complete the decryption. If wrapping failure,
but not gap failure, occurs, Bob can determine the correct value of b by computing
successively

(

b mod q + (k, k, . . . , k)
)

modq − (k, k, . . . , k) for k = ±1,±2, . . ..
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(Note that reduction modulo q always means to reduce into the interval between
−q/2 and q/2.)

It is also possible to fix gap failure by moving individual coefficients of b mod q
that are near to the edges of the interval [−q/2, q/2], but this is a more time-
consuming process, so it is worthwhile to make the probability of gap failure very
small.

It is possible to estimate the probability of wrapping and gap failure experimen-
tally by computing a large number of b polynomials. For wrapping failure, it is quite
reasonable to perform such experiments; but gap failure occurs rarely enough that
it is helpful to combine theory and experiment. The first step is to experimentally
compute a sufficent number of b’s to obtain estimates for the quantities

Prob(Max b = k) and Prob(Min b = k).

In order to estimate the probability of gap failure, there should be at least a few b’s
which have Max b ≥ q/2 and at least a few b’s which have Min b ≤ −q/2. In other
words, the data must be sufficient to give a reasonable estimate for the probability
of various amounts of wrapping failure. Having accumulated this data, it is easy to
estimate the probability of gap failure using the following formula:

Prob(Spread b ≥ q) =
∑

j

Prob(Max b ≥ j) Prob(Min b = j − q). (1)

Remark. If one performs T trials and finds no instances of wrapping failure, then
one can estimate that

Prob(wrapping failure) ≤ 1
T

and Prob(gap failure) ≤ 1
T 2 .

The justification for the second estimate is that the most likely cause of gap failure
will be when Max b = q/2 and Min b = −q/2, so one needs to have wrapping
failure at both the top and the bottom. Since the values of the coefficients of b are
essentially independent events, we obtain

Prob(gap failure) ≈ Prob(Max b = q/2) · Prob(Min b = −q/2)

≤ Prob(wrapping failure)2.

Remark. In order to decrease the likelihood of wrapping failure and gap failure,
one naturally wants to make the value of Spread b as small as possible. However,
it is important to note that one should not make Spread b too small, or else there
is a small possibility that an attacker could use a spurious decryption key (found,
e.g., by lattice reduction) whose length is considerably longer than the true private
decryption key. Experimentally, it appears to be difficult to find a spurious key
which is less than 10 times as long as the true key, so one should be safe with
parameters for which the vast majority of b’s have Spreads which are greater than
(say) q/3 or q/4.
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§2. Lattice Constants.

Aside from various sorts of exhaustive searches whose time can be estimated, the
principal attack on an NTRU cryptosystem is via lattice reduction. In this attack
one sets up a lattice Lkey (respectively Lm) which contains a moderately small
vector whose value will break the private key (respectively break the message). The
security of the NTRU cryptosystem relies on the fact that it is very difficult to find
moderately small vectors in lattices of high dimension. These lattice attacks are
described in great detail in [1], so we will not repeat the description here.

The time needed for an exhaustive search for a private key (using a meet-in-
the-middle approach [2]) is approximately the square root of the number of possible
keys, and similarly for message searches. This gives the following formulas for the
key security Skey and the message security Sm under meet-in-the-middle searches:

Skey =

√

N !
(N − 2dg)! · dg! · dg!

Sm =

√

N !
(N − 2dφ)! · dφ! · dφ!

.

(It is assumed that dg ≤ df , as will be the case in any reasonable set of NTRU
parameters.)

The time to find the target vector in a lattice L using lattice reduction is de-
termined experimentally, but there are several constants associated with the NTRU
lattices whose value will help predict the lattice security level of a particular set of
NTRU parameters. For an NTRU lattice L we let

σ(L) = Expected length of shortest non-zero vector in L.

τ(L) = Length of the target vector in L.

The important NTRU lattice constants are

ckey =
τ(Lkey)
σ(Lkey)

=

√

πe
√

2dg(2df − 1)
Nq

cm =
τ(Lm)
σ(Lm)

=

√

2πe
√

2(1− 1/p)Ndφ

Nq

cq =
σ(Lkey)

q
=

√

√

√

√

N
πeq

√

2dg

2df − 1

(We have assumed that p = 2 or 3. If p > 3, the formula for cm must be modified.) It
is clear why the first two NTRU lattice constants are important, since they measure
the extent to which the target vector is small. The third NTRU lattice constant cq

is useful because the NTRU lattices have a large number of vectors of length q. In
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practice, if cq is not too small, then efficient lattice reduction algorithms such as
LLL tend to have a difficult time finding vectors which have length smaller than q.
Indeed, what generally happens is that the algorithm returns vectors of length q
until, after a great deal of computation, the algorithm finally finds the target vector.
More precisely, if cq is not too small, then the amount of time to find any vector
of length strictly smaller than q is approximately equal to the time it takes to find
the actual target vector.
Remark. We will not give the complete derivation of the above formulas, but we
note that if L is a lattice of dimension n and discriminant D, then the Gaussian
heuristic predicts that the expected length of the shortest non-zero vector in L
satisfies

D1/n

√

n
2πe

≤ σ(L) ≤ D1/n

√

n
πe

.

The NTRU lattice Lkey has dimension n = 2N and discriminant D = qNαN for a
certain lattice balancing constant α =

√

2dg/(2df − 1), and similarly for Lm. For
further details, see [1, §3.4].

§3. Parameter Choices.

Table 1 gives a selection of parameter choices for the NTRU Public Key Cryptosys-
tem which provide a balance of security and decryption levels. This list is by no
means exhaustive, and it would be easy to create many additional acceptable pa-
rameter sets. For ease of reference, we have labeled each set with the parameters N
and p. In the case that p = 2, the values of q = 127 and q = 253 have been chosen
so that numbers modulo q fit easily into 7 bits and 8 bits respectively.

N p q df dg dφ

NTRU107.3 107 3 64 15 12 5

NTRU167.3 167 3 128 61 20 18

NTRU263.3 263 3 128 50 24 16

NTRU503.3 503 3 256 216 72 55

NTRU167.2 167 2 127 45 35 18

NTRU263.2 263 2 127 35 35 22

NTRU503.2 503 2 253 155 100 65

Table 1. NTRU Parameter Sets

Table 2 gives security values and lattice constants for the parameter sets in
Table 1. It also gives the probability of wrapping failure and the probability of gap
failure based on the experiments described in the next section.
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Skey Sm ckey cm cq Pwrap Pgap

NTRU107.3 250.0 226.5 0.257 0.258 0.422 7.0 · 10−5 2.4 · 10−9

NTRU167.3 282.9 277.5 0.236 0.225 0.296 5.5 · 10−5 2.1 · 10−9

NTRU263.3 2110.6 282.10 0.187 0.195 0.409 1.5 · 10−6 5.0 · 10−13

NTRU503.3 2284.10 2241.4 0.182 0.160 0.365 4.8 · 10−5 3.8 · 10−9

NTRU167.2 2113.2 277.5 0.252 0.210 0.370 < 10−6 < 10−12

NTRU263.2 2141.1 2104.2 0.189 0.197 0.494 < 4 · 10−6 < 2 · 10−11

NTRU503.2 2339.4 2268.1 0.183 0.156 0.433

Table 2. Security Constants, Lattice Constants and Wrap/Gap Probabilities

Remark. There is a temptation to take N to be divisible by a large power of 2,
since this might allow the use of Fast Fourier Transforms to compute the convolu-
tion product. In particular, if one were to take N to be a power of 2 and q to be
a prime satisfying q ≡ 1 (mod N) or q2 ≡ 1 (mod N), then one might compute
FFTs directly over the field with q or q2 elements. However, if N is highly compos-
ite, then XN − 1 will have many factors, so the convolution ring Fq[X]/(XN − 1)
will decompose via the Chinese Remainder Theorem. This suggests that highly
composite values of N might lead to better attacks, via algebraic manipulations
and/or improved lattice methods.

Gentry’s Folding Method [3] takes advantage of highly composite values of N
to construct lower dimensional lattices, which can be used to search for the private
key and for plaintext messages. In particular, Gentry’s method is quite effective in
the case that N is a power of 2. For this reason, it is recommended that N always
be chosen to be a prime, and in any case, it should always have a large prime factor.

§4. Wrap/Gap Experiments.

Experiments were performed using messages m consisting of an approximately equal
number of 1’s, −1’s, and 0’s. For each parameter set studied, Table 3 gives the num-
ber of samples computed, the largest observed spread, the number of samples that
exhibited wrapping failure, the probability of wrapping failure, and the probability
of gap failure. Note that this final quantity, the probability of gap failure, was com-
puted from the data using formula (1) in Section 1, since the number of samples
was too small to expect an instance of gap failure to occur.
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Samples Spread Wraps Pwrap Pgap

NTRU107.3 105 57 7 7.0 · 10−5 2.4 · 10−9

NTRU167.3 2 · 105 111 11 5.5 · 10−5 2.1 · 10−9

NTRU263.3 2 · 106 105 3 1.5 · 10−6 5.0 · 10−13

NTRU503.3 106 226 48 4.8 · 10−5 3.8 · 10−9

NTRU167.2 106 100 0 < 10−6 < 10−12

NTRU263.2 3 · 105 86 0 < 4 · 10−6 < 2 · 10−11

Table 3. Wrap/Gap Experiments
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