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Abstract. Multiplication of two (truncated) polynomials of de-
gree n takes on the order of n? operations. By splitting the poly-
nomials into two pieces, this may be reduced to approximately
%n2 operations, and repeated recursive application of this proce-

dure leads to even greater savings.

It is possible to reduce the number of operations needed to multiply two polynomials
by successively splitting them in half. The basic idea is described, for example, in
[1, section 3.1.2]. In this note we explain how this recursive splitting procedure
works, describe some experimental results showing the possible savings, and give a
pseudo-code implementation.

Let b and ¢ be polynomials of degree n — 1. The naive formula for the product

a = bcis
min(k,n—1)

ar = Z bick_i, 0<k<2n-1.
i=max(0,k—n+1)

This involves approximately n? operations (where an operation consists of one mul-
tiplication and one addition).

The successive splitting idea begins by writing b and ¢ as sums. Let ny = |n/2|
and no = n — nqy, and write

b=1>0b1 + b X™ and c=c1+caX™
with
deg(by) = deg(c1) =ny; — 1 and deg(by) = deg(ca) = ng — 1.
The product bc is then equal to
b*c=bicy + (bicg + bacy) X™ + bycy X 2™
This involves computing four products bicq, bica, bacy, bacy of polynomials of degree
(approximately) n/2, so a total of 4 - (n/2)?2 = n? operations. Nothing has been
gained.

However, the middle coefficient can be rewritten as

b162 + bQCl = (bl + bz)(cl —+ 62) — blcl - b262.
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Since the products bic; and bycy have already been computed, this reduces the
number of products from four to three. So at the cost of a few extra additions, the
computation now takes only 3 - (n/2)? = 3n? operations.
To recapitulate, the product of b = b; + b3 X™ and ¢ = ¢; + 2 X™ can be

computed as follows:

® a; =bicy
az = baco
az = (b1 + b2)(c1 + c2)
a=a1+ (a3 —a; —az)X™ + ax X?™

If now this process is applied recursively r times, then the number of operations
is reduced to approximately (%)rnQ. Of course, there is additional overhead in-
curred when invoking a subroutine (recursive or not), and the recursive routine
includes extra steps not required by the naive multiplication formula. In practice,
one determines the optimal number of recursions experimentally.

The results in Table 1 were obtained on a 333 MHz Macintosh G3 using
Metroworks CodeWarrior C compiler. There was no real effort made to write opti-
mized code. The naive multiplication was performed within the main routine. The
recursive multiplication was done by recursive calls to a subroutine until the degree
of the subdivided polynomials was less than the cutoff value d. The polynomials b
and c had degree n — 1. The coefficients of b were randomly chosen from the set
{—1,0,1}, and the coefficients of ¢ were randomly chosen between 0 and 255. The
time listed is the average time (in milliseconds) for a single product, averaged over

between 1000 and 10000 samples.

n Naive (ms) Recursive (ms)
d=38 d=16 d= 32 d=64 d=128
503 9.41 4.97 3.95 3.80 4.67 5.67
263 2.58 1.79 1.41 1.33 1.38 1.64
107 0.435 0.335 0.295 0.305 0.348 —

Table 1. Time to Perform Polynomial Multiplications

The table shows that significant time savings are available using recursive multipli-
cation. For example, time was reduced by almost a factor of 2.5 for polynomials
with n = 503 by taking a cutoff of d = 32.
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The following pseudo-code description will assist in implementing the recursive
multiplication routine.

PolyMult(a,b,c,n,N) {
[Description. Compute the product bxc and store the result in a. The polynomials
b and c have degrees n-1. The routine is called recursively until the polynomials
have degrees less than a preset CutOff parameter. If N > 0, then the product is
computed as a convolution, using the relation N =1 ]
/* if n is small, compute the product directly */
if ( n < CutOff ) {
for ( k=0; k<=2*n-2; k++ ) {
alk]=0;
for ( i=max(0,k-n+1); i<=min(k,n-1); i++) {
alk] += bl[il*c[k-il;
}
}
}
/* otherwise n is large, compute the product recursively */
else {
nl = n/2; /* n1 = 1 + degree of bl and cl1 */
n2 = n - nl; /¥ n2 =1 + degree of b2 and c2 */
Write b as b = b1l + b2#x0l;
Write ¢ as ¢ = c1 + c2%x®1,
B = bl + b2 /* note B has degree n2-1 */
C =cl1 + c2 /* note C has degree n2-1 */
PolyMult(al,bl,c1,n1,N); /* al = blxcl */
PolyMult(a2,b2,c2,n2,N); /* a2 = b2xc2 */
PolyMult(a3,B,C,n2,N); /* a3 = BxC = (b1l+b2)*(cl+c2) x*/
a = al + (a3-a1-a2)*xPl + aoxx2*nl.

}
/* the degree of a will be 2*n-2. if this is larger than N and */
/* N > 0, then use the relation XN = 1. (we assume n <= N.) %/
if (2%n-1 > N & N > 0 ) {
for ( k=N; k<2*n-1; k++ )
alk-N] += alk];
}

return O;
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Remark. If the polynomial b in the PolyMult routine tends to have small coeffi-
cients, then it is worthwhile changing the innermost assignment statement

alk] += blil*c[k-i];

to take advantage of the likelihood that b[i] will be small. For example, one might
replace the above assignment with the following:

switch (b[i]) {
case 0 : Dbreak;
case 1 : al[k] += c[k-i]; break;
case -1 : al[k] -= c[k-i]; break;
default : alk] += bl[il*c[k-i]; break;
};
Remark. In order to avoid copying numbers in and out of memory more than neces-
sary, one should perform polynomial splitting by using pointers. For example, let b
be a polynomial of degree n — 1 whose coefficients are given by the list

b= [50a51aﬁ23 .. -,ﬁn—l]a

and let n; = |n/2]|. In order to write b in the form b = b; + b2 X™ , it suffices to
let b, be a pointer to Gy and let b2 be a pointer to (3,,. In other words, if b is a
pointer to a list of length n, then b; = b is a pointer to a list of length n;, and
by = b+ n; is a pointer to a list of length n — n;.
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