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Abstract. Let R, = (Z/qZ)[X]/(X™N —1) be the ring of truncated
polynomials modulo q. We compute the probability that a ran-
domly chosen polynomial f(X) € R, is invertible in R,, and also
the conditional probability if f(X) is required to satisfy f(1) =

§1. Statements.

Fix an integer N > 2. For any positive integer ¢, let R, denote the ring of truncated
polynomials modulo ¢,
Ry = (Z/qZ)[X]/(X" —1).

In this note we will describe the group of units (i.e., invertible elements)
R, ={f € Ry : fg=1for some g € R}.

More precisely, we are interested in the probability that an element of R, is invert-
ible, so in the ratio #R} /#R,.

Our first observation is that if ¢ = ¢1¢2 with (g1, ¢2) = 1, then the Chinese
Remainder Theorem tells us that

Ry=Rg xRy, and Ry =R; xR

gz’

so it suffices to look at the case that ¢ is a power of a prime p. The following
theorem handles this case.

Theorem A. Let p be a prime, let ¢ = p* be a power of p, and let N > 2 be an
integer with ged(p, N) = 1. Define n > 1 to be the smallest positive integer such
that

p" =1 (mod N),

and for each integer d|n, let
dZu( )gchp—l) (1)
e|ld

Then

)
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In particular, if N is prime, then vy = 0 for all 1 < d < n, so in this case

#RY 1 1\ NV-1)/n
() 5) )

Remark B. There is a certain set of non-invertible elements which is easy to
describe. To do this, we observe that the evaluation map

R, —Z/aZ,  f(X)— f(1)

is a well defined homomorpism of rings, so it induces a group homomorphism Ry —
(Z/qZ)*. Tt is well-known that

(Z/9Z)* 2 {a € Z/qZ : gcd(a,q) = 1},

so we see that if f(1) has a factor in common with ¢, then it cannot be invertible.
Thus in looking for invertible elements of R,, we should make our “random” selec-
tion intelligently by requiring that ged(f(1),¢) = 1. In particular, we must avoid
polynomials with f(1) = 0.

For example, we might restrict attention to the subsets of R, and R; consist-
ing of polynomials f(X) satisfying f(1) = 1. We denote these subsets by R,(1)
and R (1) respectively.

As f ranges over R,, the values of f(1) are equidistributed in Z/qZ, so we
see that #R,(1) = ¢ '#R,. Similarly, as f ranges over Ry, the values of f(1)
are equidistributed in (Z/qZ)*, so #R%(1) = ¢(q)~'#R}, where ¢ is the Euler phi

k k—1

function. In particular, if ¢ = p* is a power of a prime, then ¢(¢q) = p* — p*~! and

we find that the probability of an “intelligently chosen” f being invertible is

#Rq(1)

Since p tends to be small in applications, this is a significant savings. For example,
if we also assume that N is prime, then

#Ry(1) (1 B 1)‘1 #R;
p) #R,

pn

#RH(1) (1 1 )(N—l)/" N1
#Rq(1) - '

Remark C. It is clear from Theorem A that in order to maximize the probability
of getting a unit in R,;, we want to choose N and p so that the order n of p in
(Z/NZ)* is as large as possible. The value of n is easy to compute for specific
values of N and p, but for cryptographic purposes we will want n to be large for a
single N and two different values of p (frequently p = 2 and p = 3). Notice that the
possible orders of elements in (Z/NZ)* are the divisors of ¢(IN), so if we take N to
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be prime, the possible orders are divisors of N — 1. This suggests choosing /N to be
a prime such that N — 1 has very few divisors.

For example, suppose that N is a prime of the form N = 2M + 1 with M also
prime. (The prime M is called a Sophie Germain prime.) Then the divisors of N —1
are 1,2, M, and 2M. So if N does not divide p? — 1, then the corresponding n must
be either M or 2M. In particular, if we take N > 100, then every primes p < 10 has
corresponding n = M or 2M, and hence the probability that a randomly chosen f
satisfying f(1) = 1 will be invertible is at least

N-1 2

1— .
MpM pM

Since p > 2 and M > 50, the probability of choosing a non-invertible polynomial is
virtually 0.

§2. Examples.

Table 1 gives some representative values of N and p. The column labeled n, gives
the smallest integer n such that

p" =1 (mod N).

The column labeled “Prob,,” is the probability that a randomly chosen f(X) in R,
satisfying f(1) = 1 will fail to be invertible in R,, where ¢ = p* is any power of p.
(Theorem A and Remark B show that these probabilities are independent of the
exponent k.) The values N = 47,59,107,167,503,1019 (highlighted in the table)
correspond to the Sophie Germain primes (N — 1)/2 = 23,29, 53, 83, 251, 509, and
thus have especially small probability of failure for all (small) primes p. Conversely,
p = 2 has order 7 modulo N = 127, and p = 3 has order 7 modulo N = 1093, so for
these values of p and N, the ring R, has a comparatively large number of non-units.

§3. Proof of Main Theorem.

In this section we will give the proof of Theorem A. We start with the following
generalization of [1, Chapter 7, Section 2, Theorem 1].

Theorem 3.1. Fix a prime p and an integer N > 1 satisfying gcd(N,p) = 1. For
any integer d > 1, let Fy(X) be the product of all monic irreducible polynomials
in F,[X] of degree d which divide XN*+1 — X. Then for any integer D > 1,

[] Fa(x) = xM#"-041 _ . @)
d|D

Proof. For convenience we let F(X) denote the polynomial on the lefthand side
of (4) and G(X) denote the polynomial on the righthand side. The polynomial F'(X)
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N p Np Prob, N P Np Prob,
47 2 23 10-7-22 47 3 23 10-11.27
59 2 58 101746 59 3 29 10— 1414
71 9 35 10— 1084 71 3 35 10—17-00
107 2 106 103191 107 3 53 102559
127 2 7 10—3-36 127 3 | 126 10—60-12
167 9 ]3 10—25-29 167 3 33 10—39-90
2929 2 76 10—23.36 299 3 57 10—27-80
349 2 348 10~104.76 349 3 | 174 108332
503 2 251 1077586 503 3 | 251 | 107120:06
1019 9 1018 1(—306.45 1019 3 509 10—243.16
1093 9 364 10—110.05 1093 3 7 10-5-53

Table 1. Probability f(X) Is Not Invertible In R«

is separable (i.e., has no multiple roots) by definition. The same is true of G(X),

since in general
Disc(X K+ — X) = +K¥,

and clearly (N,pP —1) # 0 in F,,. It thus suffices to show that the (non-zero) roots
of F' and G coincide.

First let a # 0 be a root of F'(X), say F4(a) = 0. This means that o generates
an extension of F,, of degree d, and hence

oP =1,
On the other hand, by definition Fy(X) divides XV — 1, so every root of Fy(X)
satisfies oV = 1. Therefore
a(Napd_l) — 1.
Further, we know that d|D, and so p? — 1 divides p” — 1, which implies that

a(vaD_l) — 1_

Therefore G(a) = 0.

Next let 3 # 0 be a root of G(X), so ﬂ(N’pD_l) = 1. Let d be the degree of 3
over F,, or equivalently, d is the smallest integer so that

" = 8.
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It follows that
ﬁ(vaD_l’pd_l) — 1

and hence
g1 1) _ g
It follows from [1, Chapter 7, Section 1, Lemma 3] that
(P -1,p7=1) =pP¥ -1

SO
(D,d) _q

P —1.

It follows from the minimality of d that (D, d) = d, and hence that d|D. We have
proven that the degree d of § divides D, and hence that (3 is the root of F;(D) for
some d dividing D. Therefore F(3) = 0.

This completes the proof that F'(X) and G(X) have the same roots, and hence
that F(X) = G(X). QED

Corollary 3.2. With notation as above, let n and v4 be defined as in the statement

of Theorem A. Then F[X]
— p ~ d
R e = I e

4RY 1\
#RP_H<1_F> |

d|n

In particular,

Proof. If we factor X~ — 1 into a product of irreducible polynomials in F,[X],

XN —1= fl(X)f2(X) v 'fs(X)’
then the Chinese Remainder Theorem tells us that

FX] | FplX]
(R0) TR

(Note that f1, ..., fs are necessarily distinct since gcd(IN, p) = 1 ensures that X~ —1
is separable.) Hence if we let

Fp[X]/(XN —-1)= = Fpaes(s) X -+ X Fpace(s,) -

A\g = #(irreducible factors of X~V — 1 of degree d),

then we have an isomorphism
F[X]/(XY -1 =[] (F
d
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To complete the proof of Corollary 3.2, it remains to show that )\; is equal to vy.
To apply Theorem 3.1, we look instead at

! = #(irreducible factors of XN+1 — X of degree d),

so A} = A1 +1,and A, = A4 for d > 1. Then in the notation of Theorem 3.1, we
have by definition
deg Fy(X) = d\.

Taking the degree of both sides of equation (4) yields for any integer D > 1,

> d\;=(N,p” - 1) + 1.
d|D

Since this holds for all D, we can apply Mobius inversion to get
dXy = p d (N, p® —1) +1).
@

(See, e.g., [1, Chapter 2, Section 2].) Since }_, ,u(d/e) = 0 for all d > 1, we find

that
d
=> S) (v, pe -1
d)\d eld:u<e>( y D )

for all d, which gives the desired equality Ay = v4. This completes the proof of the
first statement. For the second, we merely use the fact that the unit group of a
product of rings is equal to the product of the unit groups, and hence

#(H (de)”d)* =#H( ;d)ud =[]e* -1~ QED
dln

d|n d|n

Notice that Corollary 3.2 completes the proof of formula (2) in Theorem A
in the case that ¢ is prime. It remains to show that the case of prime powers is
essentially the same. We begin with a lemma which says that units modulo p can
always be lifted to units modulo powers of p.

Lemma 3.3. Let p be a prime, and let f be a polynomial. If f is a unit in R,
then f is a unit in R, for every k > 1.

Proof. Since f is a unit in R,, there is a polynomial g such that

fg=1 (mod p).
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We construct an inverse to f modulo higher powers of p inductively (using Newton
iteration) as follows. Set go = ¢g. Then given g;, set

giv1 = 2g; — fa?.

We claim that fg; =1 (mod p2i). This is true for 7 = 0 by construction. Suppose
it is true for 4, so fg; = 1 + p® h for some h. Then

foiri=FfC2gi—fg)=1—(1—fg)?=1-p* B =1 (modp>"). QED

We are now ready to complete the proof of Theorem A. We observe that if
f(X)=1 (mod p), then f is automatically a unit in R, for every k > 1. To see
this, we just write f(X) =1 — pg(X) for some polynomial g(X) and expand using
the geometric series

FX) ™ = (1-pg(X)) " =14 pg(X) +p*g(X)2 +- -+ g(X)* ! (mod p).

Combining this observation with Lemma 3.3, we see that for any k& > 2 there is an
exact sequence
1— (1+pRy-1) — Ry — Ry — 1,

and hence
#Ry. = p" VAR,

Since also #R,. = pFN = p(k~UNLR  we have proven that

#R%.  #R;
#R,  #R,

Now Corollary 3.2 says that formula (2) in Theorem A is correct.
The second part of Theorem A deals with the case that IV is prime. In this
case, we have for any e|n,

1 ifi1<e<n
Nyt - 1) = { se<m,
NP =D=1N ifezn

Substituting into the formula (1) for v4 yields

1 d 0 if d < n,
”d_32“<2>+{1v—1 it d = n.

e|ld

1 ifd=1,
:{O if 1 <d<n,

N-1 ifd=n.
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(If d = n = 1, then 1 = N.) Now putting these values into the general for-
mula (2) for # R} /#R, gives the desired formula (3), which completes the proof of
Theorem A. QED
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