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Abstract. Multiple NTRU encryptions of a single message using a
single key may compromise the security of the message. In this re-
port we analyze this situation and describe scrambling techniques
which allows secure multiple transmissions of a single message.

As observed in [1, §3.3], if a single message is encrypted multiple times using a
single NTRU public key, then the message may be susceptible to a multiple trans-
mission attack. Earlier versions of [1] described ways to thwart such attacks, but
space limitations forced us to omit this material in the final version. In this note
we summarize and expand this material. We give a detailed analysis of multiple
transmission attacks and indicate fast and simple procedures which will eliminate
such attacks in all practical settings.

Analysis of Multiple Transmission Attacks
Suppose that a message m is encrypted and transmitted several times using a single
public key h and different random choices ¢1, @2, ..., ¢ € L(d,d). (We recall that
L(d, d) is the set of polynomials of degree N —1 with d coefficients equal to each of 1
and —1, and the remaining coefficients equal to 0.) Thus the encrypted messages
are

e =¢;xh+m (modgq) fori=1,2,...,r.

The attacker computes the quantities
c;=(e;—e)xh ' (modgq) fori=2,3,...,r,
where h~1! is the inverse of A modulo ¢. Notice that

¢ =¢; — @1 (mod q).

But the coefficients of ¢; — ¢, range from —2 to 2, so the attacker recovers the exact
value of ¢; — ¢.

Now let’s analyze the possibilities for some particular coefficient of ¢; — ¢1, say
the j*® coefficient. If we let

a = the j*® coefficient of ¢;,
8 = the j*h coefficient of ¢,
v = the ;' coefficient of ¢; — ¢1,



NTRU Cryptosystems Technical Report #6 2

then the possibilities for v = o« — § are listed in the following table:

al\pg -1 0 1
-1 0 -1 -2
0 1 0 -1

2 1 0

Coefficient of ¢; — ¢

Hence if v = 2 (respectively v = —2), then the attacker deduces that g8 = —1
(respectively 5 = 1). In this way, the attacker will generally be able to recover
approximately 2/9 of the coefficients of ¢;. Further, if v = 1 (respectively v =
—1), the attacker is able to narrow down the possible values of 8 to 8§ = —1,0
(respectively 8 = 0,1). Thus the attacker gains valuable information about another
4/9 of the coefficients of ¢;.

Thus each of the additional transmissions es, e3, ..., e, will enable the attacker
to exactly determine approximately 2/9 of the coefficients of ¢1, and will also give
information about another 4/9 of the coefficients. It thus takes very few trans-
missions for the attacker to determine almost every coefficient of ¢, and then a
brute force search on the remaining coefficients will allow the attacker to recover ¢
and m.

Remark 1. If an attacker decrypts a single message in this fashion, the information
gained will not assist in decrypting any future messages. In other words, the encryp-
tion-decryption pair (h, f) remains secure.

Remark 2. Note that an attacker can easily determine if some of the encrypted
messages in a list e, es,..., e, have the same underlying plaintext. This is true
because the quantity

(e; —e;) * h™t = (¢ — ¢i) + (m; —m;) x h~'  (mod q)

will have all small coefficients if and only if the underlying messages m; and m; are
identical.

Prevention of Multiple Transmission Attacks

The key to secure multiple transmissions using the NTRU PKCS is to perform some
simple scrambling and/or padding of the message for each transmission. There are
obviously many ways in which this can be done. We will describe two possibilities.

Method 1. This method doubles the size of the message that is transmitted for
each block, but has the advantage of reducing message expansion to just a trifle
higher than 2-to-1. In this formulation, the message m is now a polynomial mod-
ulo g, rather than a polynomial modulo p. In order to encrypt the message m, the
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encryptor chooses a random polynomial ¢ € £(d, d) and a second random polyno-
mial ® mod 3 and computes

e=¢*xh+® (modq) and E=®xe+m (modygq).

He then transmits the pair (e, E).

The decryptor first recovers ® by using the private key to decrypt e in the
usual way. (Note that ® consists of —1’s, 0’s, and 1’s, so knowing ® modulo p with
p = 3 is enough to recover ® exactly.) Then he recovers the message m by simply
computing £ — ® x e modulo g¢.

Notice that even if a single message m is transmitted many times, the attacker
will not be able to use a multiple transmission attack, since eliminating m from two
transmissions (e1, E1) and (eq, Fo) only gives the value of the quantity

Ey; —E1=®3%xe3 — Py xe;  (mod q).

This is sufficiently intertwined so that the known values of e; and e do not allow the
attacker to directly recover ®; and ®5. Of course, there does exist a lattice attack
based on the fact that ®; and ® are comparatively short, but the associated lattice
is even less amenable to lattice reduction methods than the lattices which appear
in the usual lattice attacks.

Remark 3. For longer messages, the above idea can be extended in the following way
to give “turbo-NTRU,” a version of the NTRU PKCS having essentially no message
expansion. First fix some fast deterministic (preferably non-linear) method which
takes as input a polynomial modulo ¢ and outputs a binary polynomial. For exam-
ple, given a polynomial m modulo ¢, let B(m) be the binary polynomial obtained
by reducing the coefficients of m modulo 2 and then squaring the polynomial mod-
ulo 2. Now a list of message polynomials m1, ms, ms, ... modulo ¢ is transmitted as
a sequence of encrypted polynomials e, eq, es, e3,... computed as follows. Choose
random ¢ and ® as above, and let

e=¢xh+® (mod q)
e1=®xh+m; (mod q)
es = B(my) * h+my (mod q)
es = B(mg) * h+m3 (mod q)

Decryption is easy, since the usual NTRU decryption procedure yields ®, and then
each successive message block can be computed from the previous one. Notice the
importance of starting with a random ®, rather than with m,, so as to thwart multi-
ple transmission attacks. We also note the usual drawback of this sort of streaming,
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namely if some block contains a single tranmission error, then all succeeding blocks
will be indeciperable.

Method 2. This method is useful for small messages when one wants to keep the
size of the transmitted block as small as possible. The idea is to reserve a certain
number of initial bits of the message for random padding, and to use these bits
to modify the rest of the message in some easily invertible manner. For concrete-
ness, we illustrate using the moderate security parameters (N, p,q) = (107, 3, 64)
described in [1, §4.1].

In this case a message block consists of 107 numbers modulo 3. We will assume
that the message to be transmitted consists of 82 numbers modulo 3, say given
by a polynomial n(X) of degree 81, leaving 25 mod 3 numbers unassigned. So we
first choose a random mod 3 polynomial z(X) of degree 24. Next we use some
fast deterministic (preferably non-linear) method which takes as input a mod 3
polynomial z(X) of degree 24 and gives as output a mod 3 polynomial B(z(X)) of
degree (approximately) 81. For example, we could let B(2(X)) = z(X)? (mod 3),
or B(z(X)) = 2(X)* (mod 3, X32?). Then we set

m(X) = 2(X)X®* +n(X) + B(2(X)) (mod 3)

and encrypt m(X) as usual (i.e, as e = ¢ x h +m (mod q)).

In order to decrypt, one first uses standard NTRU decryption to recover m(X),
next z(X) is pulled off from the top 25 coefficients of m(X), and finally the actual
message n(X) is recovered as the bottom 82 coefficients of m(X)—B(z(X)) (mod 3).

Since each message is sent with a randomly chosen z, the messages will be
safe from a multiple transmission attack unless the encryptor is unlucky enough to
choose the same z for two (or more) transmissions. We can compute the probability
of this occurring. (Note we do not want to assume that the encryptor keeps track of
which z’s have already been used.) This is a “matching birthday” type of problem,
since we are asking for the probability of choosing some value twice when making
choices from a pool of 32° items. We find that if the message is sent 100 times, then
the probability of a repeat is less than 2727, and if the message is sent 10000 times,
the probability is still less than 2714, Indeed, the message would need to be sent 217
times in order to have a 1% chance of a repeated transmission. As these numbers
indicate, using 25 random coefficients will suffice to thwart multiple transmission
attacks in any practical situation.

Remark 4. If N is larger than 107, then the masking procedure B may need to
be modified, but strictly from a security viewpoint, it should not be necessary to
increase the size of the padding polynomial z. For example, if N = 167 and p = 3,
then we could take B(z(X)) = 2(X)® (mod 3), and if N = 503 and p = 3, then we
could take B(z(X)) = 2(X)!" (mod 3). On the other hand, if the actual message
is small, say no larger than half a message block, then it would be more efficient to
choose deg 2(X) = (N — 3)/2 and degn(X) = (N — 1)/2 and simply conceal the
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message as the sum
m(X) = 2(X)XWND/2 L n(X) + 3(X) (mod 3),

where Z(X) is obtained from z(X) by reversing the order of the coefficients. [In
principle, one could just add z(X), rather than Z(X). However, in that case m(X)
would have the form z(X)(XV+1/2 £ 1) + n(X).]
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