NTRU Cryptosystems Technical Report
Report # 004, Version 2:
A Meet-In-The-Middle Attack on an NTRU
Private Key

Nick Howgrave-Graham, Joseph H. Silverman, William Whyte

NTRU Cryptosystems,
5 Burlington Woods,
Burlington, MA 02144

Abstract. In this report we describe a meet-in-the-middle attack on
an NTRU private key. If the private key is chosen from a sample space
with 2 elements, then the security level of the cryptosystem is no more
than 2*/2. We also describe variants of this attack applicable to product
form NTRU keys.

Acknowledgement. We would like to thank Andrew Odlyzko for the original
description of a meet-in-the-middle attack on NTRU private keys.

1 A Meet-In-The-Middle Attack on Random Binary
Keys

1.1 Algorithm

The NTRU cryptosystem is described in [4] and subsequent papers. Here we give
only a brief outline.
We begin with some notation:

N,d, q Integer parameters used to create an NTRU cryptosystem. To make the
explanation clearer, we will assume N and d are even; the modifications
for odd values are easy. We also assume that ¢ is a power of 2; the
modification for other values is also easy.

The private key, chosen consisting of d ones and N — d zeros.
g Used to form the public key, chosen with binary coefficients.

h The public key h = f~1g (mod q), where multiplication is defined as
convolution multiplication. For more details of this process, see [4, 2]

k Integer chosen by the attacker so that 2% is larger than (g//g) (say by

factor of 100).

The idea is to search for f in the form fi||f2, where fi and fo are each of
length N/2 with d/2 ones and “||” denotes concatenation, using the property
that

f*h=g (mod q)
= (fillf2) x h =g (mod q)
= fixh=g— foxh (mod q)
= (fixh)i ={0,1} = (fo * h); (mod ¢)Vi

where the a; notation denotes the ¢th entry in a.

In fact, although f itself may not have the property that half its ones fall in
the first N/2 entries, we know that there is at least one rotation of f which has
this property! and that any rotation of f will be effective as the private key.

The steps in the attack are as follows:

Enumerate f; — Enumerate the vectors f;. (These are of length N/2, but we
identify them with the length-N vectors formed by appending N/2 zeroes.) This
takes (];’//22) steps. We put each f; into a “bin” based on the most significant
bit of the first k coordinates of f; x h (mod ¢). Each bin is then referenced by

{0,1}*, and there are 2% bins, of which about (]://22) will be occupied. (To be

_(N/2Y 5k
precise, the fraction of occupied bins will be about e (372)/2 , and some bins
will contain multiple fis).

Enumerate fs — Enumerate the vectors fy, which also takes (g//;) steps. (These
vectors are of length N /2, but we identify them with the length- N vectors formed
by prepending N/2 zeroes.) Check each f to see if it corresponds to an occupied
bin. Here, we know that if we have the correct f; and fa, then (f; * h); =
{0,1} — (f2 * h); (mod q)Vi. We therefore check for occupation not merely the
bin given by the most significant bits of the first k coefficients of — foh (mod ¢),
but also the bins given by the flips of all those most significant bits that would
be changed by adding 1 to the corresponding coefficient of — foh (mod q).

As an example, take N =4 and ¢ = 8.

— If f1 xh (mod q) =[7,2,3,5], then f; is stored in the bin marked [1001].

— If —foxh (mod q) = [6,2,1, 5], then f5 is checked against only the bin [1001].

— If —fo % h (mod q) = [7,2,3,5], then f, is checked against the bins [1001],
[0001], [1011], [0011].

! Proof: Let D = d/2. Say f has D + a ones in the first N/2 entries, D — a in the
second. Rotating f by one position can only change the number of ones in the first
N/2 entries by 0, 1 or —1. After N/2 rotations by one position, the first N/2 entries
will have D — a ones in them. Therefore, at some point, the number of ones in the
first N/2 entries must have been exactly D.

Search for matches — When f, hits an occupied bin, take the (length-N/2) f;
from the bin and form the candidate value for f as fi||f2. Check if f*h (mod q)
is binary. If it is, terminate and return f. Otherwise, proceed to the next fo. If
the bin contains more than one f;, perform this check for each f; in the bin.

1.2 Analysis of the Algorithm: Running Time and Memory

Let 7. be the time for a convolution, ie the time to calculate f; *h (mod ¢). The
time to calculate f * h (mod ¢) will be no more than 27.. Let 7; be the time for
a lookup, ie the time to find the contents of bin i, or to write to bin i, given
i. We will use these quantities to get upper bounds for the running time of the
algorithm.

The expected time to run the first part of the attack, enumerating f;, will

be no more ‘llall
1 l/2 c).

The expected time to run the second part, enumerating fo and performing
the check, will be no more than

T2 = #(fa2) *
(e +
(Expected Different Bins per fo) * 7, +
(Expected Hits per fo) % 7.)

_(N)2 ok (0s)
_<d/2> <Tc+?’r[+ ok Te | .

By increasing k, we can decrease the expected running time of this step, at
the cost of increasing memory use.

The amount of memory required, u, is highly dependent on the storage and
retrieval algorithms used. For example, memory need not be allocated for a bin
before it is used if the bins are held in a linked list structure; the resulting
reduction in memory required will be offset by the increased amount of time
required to add bins and to retrieve the data from the bins. However, taking
ity to be the size of one stored f; plus header information, and p, to be the
overhead required for the storage infrastructure, we can say

o (N2), L
/“‘LN d/2 /"’f /“LO'

It is probable that u, increases with k, but not exponentially with &k, and that
[ty increases with k, but not faster than k.

1.3 Improvements

Can we reduce these requirements further? We note that clever scheduling of
the enumeration of the fi, fos will enable the attacker to calculate almost every

f1 = h (mod ¢) by adding one rotation of h to and subtracting one rotation of
h from the previous value of f; * h (and similarly for f5). This will reduce the
intial 7, term in 71,72 to about 27./(d/2).

We also note that if instead of storing only f; in the first stage of the attack,
the attacker stores (f1, fi*h mod ¢), then it is not necessary to calculate fxh mod
q in the second stage of the attack: the attacker already knows — fo * h mod q,
and can calculate f; * h — f» x hmod ¢ by a single subtraction, taking time
approximately 7. /d.

Finally, we note that the figures above assume there is only one possible
(f1]lf2) that gives a rotation of f with d/2 ones in each of the first. In fact, we
have run experiments showing that the number of rotations of f of the correct
form is typically more than v/N. We may use this to improve the algorithm as
follows: instead of searching first on fi, then on f5, search on them simultane-
ously, storing each f; in a single bin and each f, in approximately (2N /q) bins. If
there are r rotations of the correct form, we expect a collision between an f; and
an fo corresponding to the same rotation after we have picked approximately
1/4/r of all of the fi1, fo that correspond to a substring of any correct rotation
of f. The expected running time becomes

Ty = Z(TC +

(Expected Different Bins per fi1) * 7 +
(Expected Different Bins per fo) * 75 +
(Expected Hits on picking ith fi) % 7.) +
(Expected Hits on picking ith fy) * 7¢)

~ (ij;/g) <Tc + (1 + %) n) + 2% zi:(Hits)i .

By choosing k such that 2F is large relative to (g//g)/ﬁ, we can reduce
the number of false positives such that the time used to check them is a small
fraction of the time taken to perform the enumeration. This allows us to ignore
the second term above. The running time and the storage are then constant

multiples of

(2/3)
/2

VT
The value of r will vary between private keys, but it will certainly be no bigger
than N. Our final estimate of the running time and storage space required for
this method is therefore

(3/2)

VN

1.4 Alternative Algorithms

We next consider alternative approaches to the one outlined above.

For example, an attacker may choose to assume that a run of z zeroes occurs
at the start of one rotation of f. We know that z will be at least [N/df] — 1,
and typically it could be much more than this.

The attacker enumerates randomly through the fis which have d/2 ones and
length N — z. In order to succeed, he must pick fi, fi’, such that f{ + f{' = f.
We can use a birthday paradox like argument to estimate the probability of this
happening, as follows. Each f; picked defines a “dual”, f — f;. The “collisions”
of interest do not arise from picking a given f; twice, but from picking both an
f1 and its dual. However, since each f; defines a single dual, the chance of a
collision with a dual is the same as the chance of a collision with an f;.

There are
d
d/2

substrings of length d/2 contained in a single rotation of f. We expect to have
to pick the square root of this number before getting a collision. The expected
running time of this approach is therefore

N—z
(dj2)
— .
(472)
Depending on the expected value of z, this may be more effective than the

method outlined above. For example, the parameter sets recommended in [2]
have

N=251, d=12.

Assuming that z = 20, the first method above gives an estimated running time of
2100 the second a time of 2!%. If d were 47 and z were 30, the estimated running
times would be 279 and 28! respectively. However, note that clever scheduling of
the enumeration algorithm in the second method may further reduce its running
time.

1.5 Recommendations: Binary Keys

We have described the best known techniques for meet-in-the-middle search on
binary keys. Additional refinements to these techniques may be possible. Our
recommendation is that, as a rule of thumb, 7. and 7; are taken to be 1 operation,
wy is taken to be O(NV), and p, is taken to be 0, giving the security limits:

(a2)

Running time:

N/2
/2

VN

The parameter sets recommended in [2] give some margin of safety above
these limits, to allow for minor improvements in these techniques. To be precise:

N = 251,d = 72 = running time = 2'%° .

e

Required space:

2 Application to Other Forms of Keys

The paper [3] describes the efficiency gains possible by taking NTRU private
keys to have a form other than random binary with d ones. For example, they
may be of the form

f=fixfa
or

f=fixfo+fs

In the case of the first form, the meet-in-the-middle attack consists of letting
f1 run over its whole sample space and then, for each value of fi, splitting fa
into f; and f} and looking for “almost collisions” in the lists of polynomials

fix faxh (mod q) and — f;x f3 xh (mod q) .

Let f1, fo have dfy, dfs> ones respectively. We can speed up the search time for f;
by noting that there will always be a rotation of f; such that the first ([N/df1] —
1) coefficients are one and the second entry is zero. We can speed up the search
time for fs by noting that any rotation of f; x fo will serve as the private key,
and so we can search for fi, fi' as two length-N/2 vectors with df, ones each.

Thus the search time will be approximately equal to

. (N - fN/dfﬂ) | (N/2>
dfi — 1 df2/2) -
If dfy # df-, an attacker will choose to perform the full enumeration on whichever
of fi, fo has fewer ones, and will perform the meet-in-the-middle part of the
search on the other vector.

In the case of the second form, the meet-in-the-middle attack consists of
looking for “almost collisions” in the lists of polynomials

fix faxh (mod q) and — fz*h (mod q) .

Here, the relative rotation of f3 to fi * fy is important. The time to enumerate
f1 * fo will be approximately

e (N ;lf[]\—[/ffl]> ' (N ;fiji/ilfﬂ) ’

and the time to enumerate f3, which cannot be speeded up by selecting a rota-

tion, will be
N
Tf3 ~ df3 °

Note that if dfs < df2, the attacker can transfer some ones from the fi * fo
side to the f3 side, and search for collisions in the lists

fixfyxh(mod q) and fi*fy«xh— f3xh (modq),

choosing df} and df) appropriately such that the expected running time becomes

approximately
T (N ;flwi/fm> ' \/<N ;fiji/ffgg (i) ‘

N—[N/df N N—[N/dfr1\ (N—[N/df
If (d.[cg—/l 2W) < (dfs) < (dlﬂl_/l 1])(dJEQ—/1 21), there does not appear to
be a way to transfer work between the two sides. In this case, the running time

will be dominated by the f; * fy term, resulting in:

()t

If dfs = (df1 + df2), the attacker can transfer some ones from the f3 side to
the f1 % fy side. In this case, the expected running time becomes approximately

o[y (Y B (Y,

For the previously recommended parameter sets N = 251, df; = dfy = dfs =
8, Equation 1 gives an estimated work factor of 282.

Other suggested parameter sets have taken f to be of the form 1+ pF', where
F is binary or takes one of the product forms described above. These will increase
running time by a factor of about V.

(1)

References

1. L. Babai, ‘On Lovész’ lattice reduction and the nearest lattice point problem’,
Combinatorica, 6 (1986), 1-13.

2. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard
#1, available from http://www.ceesstandards.org.

3. J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In Publickey Cryp-
tography and Computational Number Theory. DeGruyter, 2000. Available from
http://www.ntru.com.

4. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryp-
tosystem, Algorithmic Number Theory (ANTS III), Portland, OR, June 1998, Lec-
ture Notes in Computer Science 1423, J.P. Buhler (ed.), Springer-Verlag, Berlin,
1998, 267288

Comments and questions concerning this technical report should be ad-
dressed to techsupport@ntru.com

Additional information concerning NTRU Cryptosystems and the NTRU
Public Key Cryptosystem are available at www.ntru.com

NTRU is a trademark of NTRU Cryptosystems, Inc.

The NTRU Public Key Cryptosystem is subject to U.S. and worldwide
patents.

The contents of this technical report are copyright June 20, 2003 by NTRU
Cryptosystems, Inc.

